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Abstract

During retrieval, memories activate to different degrees and compete to be recalled. We

suggest the following hypotheses: memories that activate highly win the competition and

are strengthened; memories that activate moderately lose the competition and get weak-

ened; the closer the competition, the greater the consequent strengthening and weakening;

and memories that do not activate do not compete, and are unaffected.

In Chapter 1, we review the behavioral findings (Anderson and Spellman, 1995; Anderson

and Green, 2001) that suggested such a nonmonotonic relationship between level of activa-

tion and subsequent accessibility, and three possible accounts of it (Anderson et al., 2004;

Tomlinson et al., 2009; Norman et al., 2006).

In Chapter 2, we describe four behavioral experiments designed to control the degree to

which a memory activates in order to cause it to be forgotten. Experiment B1 (no signif-

icant effect) used presentation duration in an RSVP task to attempt to control activation.

Experiment B2 (no significant effect) introduced a novel ‘watermark’ suppression task with

which we attempted to release the learning of new associations from proactive interfer-

ence. Experiment B3 (no significant effect) tested whether competition-driven learning

when forming new associations caused the old associations to be weakened. Experiment

B4a (significant effect) replicated the Depue et al. (2007) think/no-think paradigm with emo-

tional stimuli. Experiment B4b (significant effect) introduced a novel ‘graduated exposure

watermark task’.

In Chapter 3, we describe how the lessons learned from two fMRI pilots shaped the design

of Experiment F7.

In Chapter 4, we describe Experiment F7 (significant effects), which applied MVPA and

region-of-interest (ROI) methods to fMRI to provide a covert, neural measure of a mem-

ory’s activation within the think/no-think paradigm, and thus to predict its subsequent

accessibility.
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In Chapter 5, we consider the lessons learned from this series of experiments, and propose

future work.
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1 Introduction

1.1 Why do we forget?

Sometimes we forget because we didn’t form much of a memory in the first place.

Sometimes we forget because we cannot produce a strongly-related cue for the memory

we wish to recall.

Sometimes we forget because memories interfere with one another at retrieval. The prior

existence of old memories can make it harder to recall newer memories (proactive inter-

ference), and the formation of new memories can make it harder to recall old memories

(retroactive interference).

And sometimes it seems that we forget because individual memories have grown weaker.

These different causes of forgetting are not completely distinct. Indeed, we will argue that

cuing, interference at retrieval and weakening may all be related by the way that memories

activate and compete at retrieval.

During retrieval, memories activate to different degrees in response to the cue, and compete

to be recalled. We hypothesize that:

1. Memories that activate highly win the competition and get strengthened.

2. Memories that activate moderately lose the competition and get weakened.

3. The closer the competition, the greater the consequent strengthening and weakening.

4. Memories that do not activate do not compete, and are unaffected.

In this introductory chapter, we will review two paradigms (retrieval-induced forgetting and

think/no-think) that provide behavioral evidence to support this set of hypotheses. We will

consider three prominent accounts of these behavioral findings (Section 1.3). Though they
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Figure 1: Nonmonotonic function relating the average activation of a representation to its
subsequent accessibility (on the y-axis). Zero activation has no effect. Moderate activation
will cause reduced accessibility. High activation will cause greater accessibility. From
Newman (2008).

take very different form, there is considerable overlap in their broad predictions. Critically,

all three make the counter-intuitive prediction that memories that are active enough to

compete but not fully activated will be subsequently less accessible (although not all of

them frame this in terms of weakening). Figure 1 shows this predicted nonmonotonic

relationship between how much a memory activates and how easy it is to retrieve later.

To test and examine this nonmonotonic prediction, we ran a series of experiments designed

to control and measure the amount of activation of and competition between memories,

and to demonstrate and predict their consequently reduced accessibility at recall.

First, we will consider the retrieval-induced forgetting and think/no-think paradigms that

motivated these predictions.

1.2 Two experimental paradigms

1.2.1 Retrieval-induced forgetting

In the best-known version of the retrieval-induced forgetting paradigm (Anderson and Spell-

man, 1995), subjects first learned a series of category-example paired associations (e.g.
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Fruit-Apple, Fruit-Pear, Fruit-Kiwi, Animal-Sheep). Then, during the retrieval practice phase,

they were cued with a subset of these pairs (e.g. Fruit-Pe__), and asked to retrieve the

associates (e.g. Pear). Finally, their recall for all the pairs was tested.

We will consider four central findings:

1. above-baseline facilitation - memory for the practiced pairs (e.g. Fruit-Pear) was better

than for the control pairs (e.g. Animal-Sheep).

2. below-baseline suppression - memory for the non-practiced related pairs (e.g. Fruit-

Apple) was worse than for the control pairs.

3. memory for the weak category exemplars (e.g. Fruit-Kiwi) (Fruit-Pe__) was not im-

paired.

4. if the paired association was fully exposed (e.g. Fruit-Pear), instead of having to be

retrieved from a partial cue (Fruit-Pe__), there was no competition between memories

vying to be retrieved, and no change in accessibility of related memories (e.g. of

Apple).

Facilitation of the practiced pairs relative to the control pairs is non-controversial - the act

of being tested and correctly retrieving a memory has long been known to strengthen it

(Karpicke and Roediger, 2008).

However, the suppression of the non-practiced related pairs is more interesting. Anderson

and Spellman (1995) argue that the forgetting of the memory for Fruit-Apple results from

competition at retrieval during practice. When cued with Fruit-Pe__, the representations for

both Pear and Apple vied to be retrieved. Pear won the competition and was strengthened

as a result, and Apple lost the competition and was weakened as a result.

This idea of competition-driven learning during retrieval is corroborated by the fact that

there is no forgetting of weak category exemplars (Kiwi) that are hardly cued by the category
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(Fruit), and no forgetting when the partial cue is replaced by a full exposure (requiring no

retrieval). Likewise, the control pair (Animal-Sheep) remains unaffected by the retrieval

practice phase, since Fruit does not cue Sheep at all, and so no competition or learning

occurs.

Cue-independent forgetting Anderson makes a strong claim that this weakening effect

acts on the associate item itself, rather than just severing the association between the pair

of items. This assertion rests on the finding of cue-independent forgetting (Anderson and

Spellman, 1995; Levy and Anderson, 2002) - even when cued with an independent cue

such as Red-A__, the unpracticed associate Apple was less accessible. This would seem

to suggest weakening of the associate representation (Apple) itself, rather than just the

learned association (Fruit -> Apple) (however, see Camp et al. (2007) for problems with this

approach). For the most part, we avoid discussion of whether the weakening affects the

associate item, the association between the cue and the associate, or both. Our predictions

are consistent with either possibility.

1.2.2 The think/no-think paradigm

The think/no-think paradigm (Anderson and Green, 2001) provides another approach for

thinking about forgetting. There were three main phases:

1. In the study phase, subjects learned a series of paired associations.

2. In the think/no-think phase, they were repeatedly presented with the cues from these

pairs.

(a) For the think pairs, they were instructed to retrieve the associate.

(b) For the no-think pairs, they were instructed to try not to let associate enter their

consciousness.
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The baseline pairs were not presented during the think/no-think phase at all.

3. In the test phase, subjects’ recollection for the think, no-think and baseline pairs was

tested.

Subjects’ recall performance on the think pairs, (where they had tried to retrieve the asso-

ciate) was better than for the baseline pairs that had not been practiced at all since being

learned. This above-baseline facilitation is another example of correct retrieval causing a

memory to be strengthened.

Subjects’ recall performance on the no-think pairs (where they had deliberately refrained

from retrieving the associate) was worse than for the baseline pairs which had not been

practiced at all since being learned. This below-baseline suppression suggests that the act of

deliberately suppressing the recently-learned associate to a cue from entering conscious

awareness caused that associate to be forgotten. As in retrieval-induced forgetting, this

reduced accessibility of the associate was also demonstrated using an independent cue, i.e.

other than the cue learned as part of the paired association.

Levy and Anderson (2002) argue that these think/no-think results, in conjunction with

those from retrieval-induced forgetting, provide strong evidence that memories can be

weakened under a variety of circumstances, some under our deliberate control and some

not.

1.2.3 What do retrieval-induced forgetting and think/no-think have in common?

We have introduced the retrieval-induced forgetting and think/no-think paradigms together

because we think we can provide a common framework for understanding them.

Both paradigms involve studying paired associates, followed by a practice phase in which

the cues trigger some amount of recollection, and then a final recall test of all the pairs.

Both the practiced pairs in retrieval-induced forgetting and the think pairs in think/no-think
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were successfully retrieved and show an above-baseline facilitation effect. These memories

were highly activated by the cues, won the competition at retrieval, and were consequently

remembered better.

Both the unpracticed related pairs in retrieval-induced forgetting and the no-think pairs in

think/no-think showed a below-baseline suppression effect. These memories were moderately

activated by the cues, lost the competition at retrieval, and were consequently forgotten.

The fully exposed pairs and weak category exemplars in retrieval-induced forgetting did

not elicit much competition at retrieval, and showed little consequent change in accessi-

bility. Likewise, Levy (2008) showed that the more that subjects report intrusions during

no-think trials (evidence of competition), the greater their subsequent below-baseline sup-

pression effect.

1.2.4 The unreliability of the below-baseline suppression effect

The below-baseline suppression effect has been replicated a number of times with variants

of both the retrieval-induced forgetting paradigm (e.g. Anderson et al. (1994); Anderson

and Spellman (1995); Bauml (1996); Bauml (2002); Storm et al. (2007); Kuhl et al. (2007) - see

survey by Levy and Anderson (2002)) and the think/no-think paradigm (e.g. Anderson et

al. (2004); Depue et al. (2006); Depue et al. (2007); Levy and Anderson (2008)).

However, there have also been a number of published failures to replicate this below-

baseline suppression effect (e.g. Hertel and Gerstle (2003); Algarabel and Martinez (2006);

Butler et al. (2001); Bulevich et al. (2006); Bergström et al. (2007)). Notably, Bulevich et

al. (2006) were unable to show a below-baseline suppression effect in a modified version of

the Anderson and Green (2001) think/no-think paradigm, nor even when they attempted

an exact replication of the original experiment with directions from Michael Anderson.

Williams and Zacks (2001) failed to replicate the Anderson et al. (1994) finding of greater

forgetting for the strong category exemplars (Apple) than the weak category examplars.
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Indeed, most demonstrations of below-baseline suppression show only about a 10% drop

in recall performance, with considerable variability both within and between subjects. Why

is this below-baseline suppression such a noisy and subtle effect?

In short, we suggest it is because there has to be a competition at retrieval in which the to-

be-forgotten representation activates moderately but below the threshold of strengthening.

Calibrating this level of activation experimentally is very hard to do, since too much or too

little will undermine the effect.

We expand upon this explanation below (Section 1.3).

1.3 Three accounts

We will consider three accounts of these retrieval-induced forgetting and think/no-think

effects:

1. Top-down, targeted inhibition suppresses the competing representations (Anderson

et al., 2004; Levy, 2008) - Section 1.3.1

2. After the memory trace is located during the first sampling stage of retrieval, its con-

tents are replaced by a new interfering memory during the recovery stage (Tomlinson

et al., 2009) - Section 1.3.2

3. Local competition between representations drives learning, explained in terms of the

oscillating learning algorithm (Norman et al., 2006) - Section 1.3.3

With a little reframing, all three predict that the relationship between activation and learn-

ing is nonmonotonic: low activation has no effect, moderate activation causes forgetting,

but a lot of activation improves recollection.

It is easy to think about why this nonmonotonicity might be a beneficial strategy for the

brain to adopt. If multiple memories compete vigorously in response to cue, that indicates
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that they are poorly differentiated, that the target memory needs to be strengthened, and/or

that some of them need to be weakened. It makes sense then to strengthen those that activate

the most, to ensure that they activate more next time and win more readily. Conversely, it

makes sense to weaken the competing memories that activated partially, so that they do

not get in the way so much in future. The cumulative effect of many such strengthenings

and weakenings is to rebalance the memories and to differentiate them from one another.

Indeed, Norman et al. (2007) showed that this differentiation as a result of competition is

the reason that nonmonotonic algorithms (such as the oscillating learning algorithm) are

extremely effective at learning many, many correlated patterns.

Why competition-driven learning is hard to demonstrate experimentally While this

nonmonotonic plasticity curve conveys clear benefits to the learner, it makes it difficult

to demonstrate forgetting of memories experimentally. This is because nonmonotonic

models predict that the range of activation within which forgetting occurs is bounded

on both sides - too little and the memory will be unaffected, too much and the memory

will be remembered better. If this is true, then these below-baseline suppression effects

are fickle because it is very difficult to reliably elicit just the right level of activation of a

representation.

Put another way, striking the right level of competition between memories to cause max-

imal forgetting of the losing competitors is hard, because the closer the margin between

the winning and losing memories, the greater the consequent change in accessibility. If

the competing memories gain the upper hand even briefly, we can expect them to be

remembered considerably better, canceling out any forgetting effect.

We will now consider the three nonmonotonic accounts in turn.
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1.3.1 Top-down targeted inhibition - Levy & Anderson (2002)

Michael Anderson interprets the results from retrieval-induced forgetting and think/no-

think in terms of targeted inhibition from executive control areas (Logan, 1994; Knight et al.,

1999). As we have discussed (Section 1.2.3), we can consider retrieval practice in retrieval-

induced forgetting and no-think trials in think/no-think as engendering a competition

between memories vying to be retrieved in response to the cue. Like the teacher in a

school yard, the executive control areas step in to resolve the competition, ensuring that

the target representation wins and the competitor representations lose. They suggest that

this intervention of executive control processes causes strengthening of the winning target

representation and weakening of the losing competitor representations.

Levy and Anderson (2002) make an overt analogy between the control processes involved

in overriding prepotent motor responses (as in the go/no-go task: Sakagami and Niki, 1994;

de Zubicaray et al., 2000) and the control processes involved in suppressing memories (as

in think/no-think) (see also Levy, 2008). More strongly, they suggest that control in both

the motor and the memory domains may actually be regulated by overlapping neural

processes. Plausibly, the competition at retrieval activates the anterior cingulate cortex

(ACC) as a kind of conflict-detection alarm bell. The ACC, in turn, recruits the lateral

prefrontal cortex (PFC) to down-regulate the unwanted competing memories. Depue et

al. (2007) and Kuhl et al. (2007) provide further evidence that these frontal mechanisms are

heavily involved during the no-think trials.

However, as Levy (2008) recognizes, this executive control need not necessarily be in-

hibitory - much the same result can be achieved by excitation of the target representation

combined with local lateral inhibition (Miller and Cohen, 2001; Norman et al., 2007). By

providing supplementary excitatory input to one of the representations vying to be acti-

vated, the prefrontal cortex could bias the competition in favor of the target representation,

overriding the prepotent response. Local competition-driven learning would then cause

the over-ridden representation to be weakened, without any top-down inhibition required.
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We discuss the arguments in favor of targeted top-down inhibition (rather than top-down

excitation combined with local lateral inhibition) further in Section 1.3.3.

The centrality of executive control in this account of memory weakening led Levy and

Anderson (2008) to propose the executive deficit hypothesis - individual differences in ex-

ecutive control underly the individual differences in suppression of unwanted memories.

They suggest that these differences in executive control account for a large proportion of

the between-subjects variance in the laboratory paradigms described above, and also in

different people’s ability to suppress traumatic memories.

1.3.2 The two-stage theory of interference - Tomlinson et al (2009)

Models such as SAM (Search of Associative Memory; Raaijmakers and Shiffrin, 1981) and

REM (Retrieving Effectively from Memory; Shiffrin and Steyvers, 1997) have been very

successful at explaining many forgetting effects solely in terms of interference between

memories at retrieval - in other words, even when we forget, the memory is still there, but

is occluded by other memories. They do not incorporate any mechanism for structural

weakening of memory traces.

So it seemed that the retrieval-induced forgetting and think/no-think below-baseline sup-

pression effects (especially cue-independent forgetting - Section 1.2.1) posed a problem for

such models, since it did not seem to be possible to accommodate these effects without

positing some kind of structural weakening of memories.

Recently though, Tomlinson et al. (2009) have proposed an interesting reframing of the

no-think cue-independent forgetting effect in terms of the 2-stage sampling and recovery

model of recall featured in models like SAM:

1. The memory trace is located in the sampling stage

2. The details of the memory are retrieved in the recovery stage
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Tomlinson et al. (2009) proposed that interference in the recovery stage might account

for cue-independent forgetting, without requiring any weakening of the memory itself.

Participants may sometimes have sampled the partial memory trace during a no-think

trial, despite their efforts not to. Having sampled it, they then associated this memory

trace with the no-think response (of sitting quietly). In other words, they activated the

memory partially during the no-think trial, and in doing so, created a new ’sitting quietly’

memory on top of it. During the final recall phase, the independent cue sampled the

same location for the memory trace, but now recovered the newly-learned no-think ’sitting

quietly’ response, resulting in impaired recall performance without the actual memory for

the associate being weakened.

To test this, they ran a modified version of the think/no-think paradigm that included an

extra ’press enter’ condition in which subjects were instructed to simply press the ’enter’

key as quickly as possible in response to the cue. By their account, this would create an

interfering ’press enter’ memory occasionally whenever the associate memory trace was

sampled, and that this ’press enter’ memory trace would then interfere with the associate

memory trace during recovery in the final recall phase. This task should not recruit any

executive control memory suppression mechanisms of the kind described by Levy and

Anderson (2002) (see Section 1.3.1). In line with Tomlinson et al. (2009)’s predictions,

performance in this ’press enter’ condition was significantly lower than in the baseline

condition, and not significantly different from performance in the no-think task.

It seems reasonable to think this account might be extended to the retrieval-induced for-

getting paradigm too. Perhaps the Apple representation is sampled at retrieval practice

sometimes when Fruit-Pe__ is the cue, but ultimately Pear is recovered. As a result, when

cued later with either Fruit-A or Red-A (an independent cue), Pear interferes, so Apple is

less accessible, and appears to have been weakened.

11



Nonmonotonicity within the interference-based account To our knowledge, the pro-

ponents of this interference-based account have not made any explicit prediction of a

nonmonotonic relationship between activation and learning. However, it seems straight-

forward to accommodate this prediction within their framework:

1. At low levels of activation, neither sampling nor recovery of the associate occur, and

so recall performance should be unaffected.

2. At moderate levels of activation, the association memory trace is being partially

activated during the sampling stage, but not recovered, and the new interfering

’sitting quietly’ memory trace is laid down. This is simply a restatement of Tomlinson

et al. (2009)’s explanation given above for the below-baseline suppression effect.

3. At high levels of activation, perhaps subjects are actually recovering the original

association memory trace fully and, in the process, strengthening that association.

This account proposes a very different mechanism to explain the below-baseline suppres-

sion effect in comparison with the structural weakening involved in the top-down targeted

inhibition and oscillating learning algorithm accounts. However, as we can see, it generates

a broadly similar set of nonmonotonic predictions. For the most part, we will focus on

testing the predictions that these three accounts have in common, though we will briefly

discuss ways to disambiguate the predictions made by this ’pure interference’ account from

the other ’structural weakening accounts’ in Experiment B2 and in Section 5.3.2.

1.3.3 The oscillating learning algorithm - Norman et al (2006)

The oscillating learning algorithm (Norman et al., 2006; Norman et al., 2007; Norman et al.,

2005) is a neural network learning rule that emphasizes the role of local competition-driven

learning in its account of the retrieval-induced forgetting and think/no-think findings. We
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will focus first on applying it to the retrieval-induced forgetting paradigm to illustrate how

it works.

Each pair is modeled as a distributed representation (i.e. a pattern of activity over a set

of units) in a neural network containing recurrent weights. The cues (e.g. Fruit-Pe__) are

modeled by providing excitatory input to a subset of the units involved in the Fruit-Pear

representation. The network has already learned weights that connect these units together

strongly, and so it can retrieve the associate (Pear) to the cue (Fruit-Pe__) by allowing activity

to spread from the units that are receiving external excitatory input to the remainder.

The interesting aspect of the network’s learning occurs after the partial cue has been

provided, where activity is spreading between units and the network is settling into an

attractor.

Inhibition, strengthening and weakening in the oscillating learning algorithm In or-

der to understand the network dynamics better, we need to consider how inhibition is

implemented in the model.

In the brain, inhibitory inter-neurons regulate the overall level of activity by measuring

the output from excitatory neurons and providing a dampening, inhibitory effect as this

level of excitatory activity rises - just as the air conditioning kicks in when a room gets too

hot. Rather than simulating these inhibitory inter-neurons directly, we make use of the

k-winners-take-all (kWTA) algorithm (Minai and Levy, 1994; O’Reilly and Munakata, 2000)

as a simplifying shortcut, which mimics the effect of inhibitory inter-neurons by adjusting

the overall level of inhibition directly to maintain some setpoint of activity.

In the oscillating learning algorithm model, inhibition plays a more proactive role by

oscillating on top of this kWTA setpoint sinusoidally.

1. At the activation setpoint, the active units tend to be part of the Pear representation,

since they are receiving more excitatory input from the Fruit-Pe__ cue than the Apple
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units, and thus supporting one another more with spreading activation.

2. When we reduce the inhibition, more units will become active. Any units whose

activity increases as the inhibition reaches its trough are part of competitor represen-

tations (Apple) that are finally free to activate, and so the oscillating learning algorithm

decrements their weights.

3. When we increase the inhibition, fewer units will remain active. Any units whose

activity decreases as the inhibition reaches its peak are part of the target representation

(Pear) that are struggling to stay active, and so the oscillating learning algorithm

increments their weights. 1

For a more detailed description of the algorithm, see Norman et al. (2006) and Norman

et al. (2007).

In this way, the low inhibition serves to flush out and identify the units of competing

representations so that they can be weakened, and the high inhibition serves as a stress-test

that identifies the units of the target representation so that they can be strengthened.

Competition in the no-think trials It is less clear how to think about competition in the

context of the no-think trials. We can consider the ’losing’ memory to be the associate

that is supposed to be suppressed, but subjects are not provided with an explicit ’target’

memory that should trump this to-be-suppressed associate. We suggest that there are many

possible representations that play the role of winners in this competition. For instance, in

informal post-experimental debriefings, our subjects reported using a variety of different

strategies during no-think trials, such as: focusing on the letters of the cue word; thinking

about pre-experimental associations to the cue word; singing a song to themselves; and

creating new substitute associations of their own. Each of these would provide target

1For clarity of exposition, we have simplified the description of how the sign of the learning algorithm
changes as a function of the phase of the oscillation - actually, learning occurs at all four phases of the
oscillation (Norman et al., 2006).
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representations that could successfully compete with the to-be-suppressed representation

during retrieval. Indeed, Hertel and Calcaterra (2005) reported that they only found

below-baseline suppression for no-think trials when subjects used a substitute association.

2 Certainly, we could consider the ’press enter’ instruction used by Tomlinson et al. (2009)

as a kind of competitor, and indeed they treat ’sitting quietly’ as a potentially interfering

(and therefore competing) memory.

However, there is a case to be made that it is top-down inhibition, rather than substitu-

tion or local competition, that drives the below-baseline suppression effect. According to

Levy (2008), around 10% of subjects reported “letting their mind go blank” as a strategy, and

still showed a below-baseline suppression effect, and Bergström et al. (2007) only found cue-

independent forgetting when subjects were instructed to use a ’thought suppression’ rather

than ’thought substitution’ strategy. From the imaging literature, Depue et al. (2007) did

not find increased activity in sensory cortical areas during no-think trials, which they took

as evidence that subjects were not generating new substitute associations. And Levy (2008)

points to the hippocampal down-regulation during no-think trials (Anderson et al., 2004;

Depue et al., 2007; also Section 3.1.1) as further evidence of inhibition - however, this might

be explained by biased competition and lateral inhibition, or (more speculatively) by a

more diffuse spatial profile produced by multiple competing memories that elicits a lower

overall BOLD response across the region of interest.

On balance then, it seems reasonable to frame the no-think trials in terms of competition,

much like the retrieval practice trials.

In the next section, we emphasize that our central hypotheses concern the nonmonotonicity

of the relationship between activation and learning, rather than competition per se.

2However, because Hertel and Calcaterra (2005) did not include an independent cue test, their below-
baseline suppression when using substitutions could be explained purely in terms of interference effects,
undermining any strong conclusion that we might want to draw from this experiment.
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Nonmonotonic relationship between average activation and consequent learning In

the account given above, competition at retrieval is driving the oscillating learning algo-

rithm’s weight changes. But at a coarser level, we can look at these weight changes as a

function of representations’ average activity over the course of the oscillation. The moderately

active competing Apple representation is only present during the low-inhibition phase of

the oscillation (moderate average activation) and gets weakened. The strongly active target

Pear representation only falters during the high-inhibition phase of the oscillation (high

average activation)and gets strengthened. Finally, the inactive control Sheep representa-

tion does not activate at all (low average activation) during the oscillation, and so is neither

strengthened nor weakened. In this way, the oscillating learning algorithm predicts the

nonmonotonic relationship between the average activity of a representation and its conse-

quent weakening/strengthening shown in Figure 1.

Extremely high levels of activation Strictly speaking, the oscillating learning algorithm

makes the further prediction that no learning will occur for extremely high levels of activa-

tion (beyond the right-hand end of the X axis of Figure 1), since very strong representations

would not falter even during the high-inhibition stress-test portion of the oscillation - and

without a decrease in activation as inhibition peaks, no weight changes will occur. How-

ever, we consider it unlikely that any of the paired associates learned in the laboratory

experiments described below will create memories strong enough to activate in this upper

range. For this reason, we will focus on the predictions relating to the lower three-quarters

of the activation range (following Newman and Norman, 2010).

Nonmonotonic plasticity curves in the literature This notion of a nonmonotonic neural

plasticity curve relating activation to learning is not new or unique to the oscillating learning

algorithm (Bienenstock et al., 1982; Senn and Fusi, 2005; see Newman and Norman, 2010

for a wider survey, also discussed in Section 3.1.1).

The oscillating learning algorithm was originally designed to account for the rich and
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varied findings in the human behavioral retrieval-induced forgetting domain, only briefly

surveyed in Section 1.2.1 (see Norman et al. (2007) for a much more detailed survey). But

we can also look to neurophysiology for evidence of nonmonotonic plasticity curves -

the function relating concentration of Ca2+ ions (indicative of excitatory input) to learning

(long-term depression and long-term potentiation) appears to have the same nonmonotonic

shape (Hansel et al., 1996).

More generally, these nonmonotonic learning curves also have a number of desirable

functional properties, including high and robust associative memory storage capacity,

especially for correlated patterns (Norman et al., 2006).

Indeed, many of the same nonmonotonic predictions would be made by this entire family of

nonmonotonic learning algorithms. However, direct evidence of nonmonotonic plasticity

is relatively sparse - only Newman and Norman (2010) have set out to show this relationship

in humans, and no one has yet looked for it in the various suppression paradigms described

here.

1.4 Aims: controlling and measuring

Broadly, we will take two approaches to testing our prediction of a nonmonotonic relation-

ship between memory activation and accessibility:

1. In our behavioral experiments, we will attempt to finely control the degree of activation

of to-be-forgotten representations by engineering tasks that will moderately activate

them, which should cause those representations to be forgotten. The hard part is to

ensure that these representations do not accidentally over-activate, since that would

cause them to be counter-productively strengthened. See Chapter 2.

2. Given that such careful titration of memory activation is very difficult to achieve, we

will attempt to devise a covert, neural measure of memory activation. With this measure,

we should be able to predict which trials will be remembered worse and which
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better, based on the oscillating learning algorithm’s hypothesized nonmonotonic

relationship between activation and learning. See Chapters 3 and 4.

1.5 Overview of experiments

We will discuss a total of 7 experiments, the first 4 of which were behavioral, and the last 3

of which used fMRI:

1. Experiment B1 used a rapid serial visual presentation (RSVP) task to try and elicit

partial activation and forgetting of associations by briefly cuing them. Although the

results looked promising, the overall non-parametric test for the complete binning

analysis was not significant - see Section 2.2.

2. Experiment B2 failed to demonstrate the suppression of A-B pairs (using our ‘water-

mark’ task) through a release from proactive interference when learning A-C pairs in

an AB-AC paradigm - see Section 2.3.

3. Experiment B3 failed to show suppression in an AB-AC paradigm, designed to en-

gender competition between the old and new associations in order to weaken the A-B

associations - see Section 2.4.

4. Experiment B4a was an attempted replication of a think/no-think paradigm with

emotional stimuli (Depue et al., 2006). Experiment B4b successfully adapted this

paradigm to produce a below-baseline suppression effect with our ‘graduated expo-

sure watermark’ task - see Sections 2.5 and 2.6.

5. Pilot Experiment F5 was an early fMRI pilot, testing how well we could classify

successful from unsuccessful recalls - see Section 3.2.

6. Pilot Experiment F6 was our first attempt to apply MVPA to the think/no-think

paradigm - see Section 3.3.
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7. Experiment F7 was our culminating think/no-think fMRI experiment, demonstrating

that a covert neural measure of memory activation shows a nonmonotonic relation-

ship with subsequent accessibility - see Chapter 4.
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2 Behavioral experiments

2.1 Introduction - controlling the degree of activation of the to-be-forgotten

representations

We think of the basic no-think instructions (Anderson and Green, 2001) (“don’t let the

associated item enter your consciousness”) as a means of eliciting a little but not too much

activation of a representation. The cue presentation causes the associate to activate a little,

but the subject’s cognitive control mechanisms step in to ensure that the associate represen-

tation does not fully activate (see Section 1.3.1). Together, these two mechanisms counteract

one another, keeping the activation of the to-be-forgotten associate’s representation within

the moderate-level forgetting band.

However, this procedure could easily fail - if the inhibitory cognitive control mechanisms

were to respond insufficiently or too slowly, the representation would activate too much

and become more accessible. On the other hand, if subjects were to become too adept at

barring the associate from consciousness, it might hardly be activated at all, and hardly be

forgotten.

In the experiments we propose, we aim to activate representations moderately while mini-

mizing the number of ‘intrusions’ where the representation over-activates by a small margin

and gets consequently strengthened. In Section 1.3, we suggested that the below-baseline

suppression effect is so unreliable because even a few of these just-above-threshold intru-

sions produce occasional, large bursts of strengthening that cancel out the small forgetting

effects.
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2.2 Experiment B1 - rapid serial visual presentation (RSVP)

2.2.1 Introduction

In this experiment, we used a straightforward rapid serial visual presentation (RSVP)

task to partially activate the to-be-forgotten associations by cuing them very briefly. The

cue presentation duration serves as a proxy for the activation of its associate, predicting

a nonmonotonic relationship between a cue’s duration and the recall probability for its

associate (as shown in Figure 1). In other words: final recall for cues presented very

quickly should not be affected; final recall for cues presented at a medium rate should be

impaired; and final recall for cues presented slowly should be improved.

2.2.2 Methods

Participants 31 subjects participated in this experiment, either for course credit or for a

$12 payment. All of the subjects were drawn from the Princeton community.

Stimuli All of the cue-associate pairs in this experiment consisted of:

1. A location cue, e.g. ‘Underwater’, ‘Gymnasium’ or ‘Helicopter’

2. A famous person associate, e.g. ‘Britney Spears’, ‘Tom Cruise’ or ‘George W Bush’

Both a picture and a name were provided to the subject - see Figure 2.

In order to minimize primacy and recency effects, 3 extra pairs were presented at the

beginning of each study run, and 3 extra pairs were presented at the end of each study run

- these filler pairs were not included in any of the following analyses.

In order to minimize encoding variability, we tried to ensure that each subject would only

be studying celebrities who were familiar to them. Prior to the experiment, each subject
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Figure 2: Example location/celebrity stimuli pair used in Experiments B1, B2 and B3.

was presented with a large pool of celebrity stimuli from which they were asked to exclude

any that were unfamiliar.

Study phase Each of the 80 location-celebrity pairs was presented twice (with a break

between lists). Each presentation trial lasted 3750ms, with a 250ms inter-trial interval.

Rapid serial visual presentation (RSVP) phase The 80 pairs were divided evenly into

an experimental RSVP group, and a baseline group.

The baseline pairs did not appear during this RSVP phase at all.

Subjects were presented with the location cues for the 40 RSVP pairs in a randomized order

in rapid sequence, repeating each cue 12 times in each of 4 runs. They were instructed to

press the spacebar whenever they noticed an interspersed ’oddball’ animal image.

Each RSVP run consisted of roughly 500 trials (varying slightly depending on the number

of oddball images inserted). Each RSVP pair was assigned a unique presentation duration,

ranging from 30ms to 498ms in increments of 12ms. Each RSVP location cue stimulus was

padded with a mask for a duration of at least 25ms to ensure a constant inter-stimulus
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interval across trials. 3

The oddball images were presented for a jittered duration of 180ms +/-150ms. Oddball

images were randomly inserted into the RSVSP stream separated by at least 8 and at most

15 location trials. The oddball animal type (polar bear, tiger, dog, eagle) changed on each

of the four runs. At the beginning of each run, subjects were familiarized with all of the

oddball images for that animal type.

Final recall phase In this final recall phase, subjects’ recollection of all of the associations

(both RSVP and baseline groups) was tested, in randomized order. They were presented

with the location cue and asked to type in the full name of the associated celebrity within

10,000ms. These typed responses were marked as correct if exactly or nearly the same

(within three missed, translated or mistyped keystrokes) as the full celebrity name. For

instance, a response of ’Jac Nihcolson’ would have been marked as correct if the right

answer were ’Jack Nicholson’.

2.2.3 Results

Comparing baseline and RSVP pairs The mean performance in the final recall phase

across subjects for the baseline pairs (80.1%, SEM = 0.02) was higher than for the RSVP

pairs (79.4%, SEM = 0.03), although this difference was not significant (t(30) = 0.40, p >

0.05) - see Figure 3.

Binning RSVP pairs by cue duration To examine the relationship between cue duration

and recall, we grouped sets of pairs together into N bins based on their RSVP presentation

duration. 4 For instance, if we were to divide the pairs into 10 bins, then the first bin

3The total inter-stimulus interval, including the mask and two screen refreshes, added up to 550ms per
trials. This should be large enough to avoid complications from attentional blink effects (Raymond et al., 1992),
which are most acute around 200-300ms (Nieuwenhuis et al., 2005), and have mostly fallen off by 500ms (Chun
and Potter, 1995).

4As described in Section 2.2.2, the range of presentation durations was the same for each subject.
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Figure 3: Comparison between the final recall performance for the baseline and RSVP pairs.

would contain the RSVP pairs with durations of 30ms, 42ms, 54ms or 66ms. For each

subject, for each bin, we computed the mean cue duration and the proportion of final recall

responses answered correctly. We could then compare the proportion correctly recalled

across subjects for one bin with another bin (or against baseline) with a paired samples

t-test.

This analysis is similar in spirit to the binning analysis applied to classifier activations in

Experiment F7 (Section 4.8), and many of the same issues apply. As we discuss in Section

4.8.7, it is hard to estimate in advance how many bins to divide the pairs into, and there are

tradeoffs to having too many or too few, so we ran the analysis for 3, 4, 5, 6, 7, 8, 9 and 10

bins - see Figures 4, 5, 6 and 7. We will refer to each of these analyses, run with a different

number of bins, as a bin-set - in other words, there were 8 total bin-sets (3-10).

To assess whether moderately active memories were being forgotten, we compared the

recall performance for all of the middle (i.e. excluding the first and last) bins with the recall

performance for the first and last bins, and also for the baseline pairs.

We will focus initially on the 8 bin-set analysis. As can be seen in Figure 6b, the recall

performance for the pairs in the 3rd bin was significantly below the recall performance
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Figure 4: RSVP binning analysis - varying the number of bins: (a) 3 bins (b) 4 bins. N.B.
The errorbars displayed are between-subjects, though the actual t-tests comparing each of
the middle to the outer bins were paired samples.

Figure 5: Binning analysis - varying the number of bins: (a) 5 bins (b) 6 bins. As described
above, these are between-subjects errorbars.
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Figure 6: RSVP binning analysis - varying the number of bins: (a) 7 bins (b) 8 bins.

Figure 7: Binning analysis - varying the number of bins: (a) 9 bins (b) 10 bins.
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for the baseline pairs (t(30) = -1.91, p < 0.05) (large green circle), and below the recall

performance for the pairs in 1st bin (t(30) = -2.98, p < 0.05) (small magenta circle). However,

there was no significant difference between the 3rd and the 8th (last) bin (t(30) = -1.07, p >

0.05). Performance in the 5th and 8th bins was also significantly below the 1st bin (small

magenta circles). Unexpectedly, performance on the 1st bin was actually significantly above

baseline (t(30) = 1.98, p < 0.05) (not marked on Figure 6b).

Performance in the 3rd bin was also significantly below baseline in the 7-tile and the 10-tile

analysis (marked with green circles). In multiple cases, performance on middle bins was

significantly below the that of the 1st bins, but since these were somewhat elevated, we do

will not emphasize this.

None of the middle bins in the 8 bin-set analysis showed performance significantly below

that of the last bin.

Correcting for multiple comparisons with non-parametric statistics In the preliminary

statistics described above, we did not correct for multiple comparisons. Firstly, we ran

our t-test analyses separately on each of the middle 6 bins. Secondly, we ran the complete

bin-set analysis multiple times, with varying numbers of bins (3-10).

For both these reasons, we introduced a non-parametric analysis (permutation test; Nichols

and Holmes, 2001) to correct for these multiple comparisons. This would determine

whether the complete set of analyses across all the bin-sets showed a significant nonmono-

tonic effect. In other words, we wanted a single overall p-value that would reflect how

often we should expect to see middle bins dipping this far below the first and last bins

within their bin-set by chance.

1. We started by running the complete set of individual t-tests on each of the middle

bins, for each of the (3-10) bin-sets, exactly as described in the previous section.

2. For each middle bin, we were running two t-tests: one to compare it with the first bin,
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and one to compare it with the last bin (see description above). We now kept only the

t-stat for the least significant of these two comparisons, for each of the middle bins.

This yielded a single t-stat for each of the middle bins, for each of the (3-10) bin-sets.

3. For each complete bin-set, we picked the middle bin with the best t-stat. This yielded

a single t-stat for each bin-set. For instance, in the case of the 8-bin analysis described

above, we would have picked the t-stat for the 3rd bin compared against the last bin.

4. Finally, we took the mean across bin-sets of these t-stats (one per bin-set), yielding a

single mean t-stat.

5. To create the null distribution for the permutation test, we scrambled the binary labels

attached to each RSVP pair denoting whether that pair was recalled or forgotten,

within subjects. After scrambling, each subject would still have the same proportion

of pairs marked as recalled, but which were recalled and which forgotten would vary.

Subjects who recalled all or none of their RSVP pairs were excluded from the analysis.

All of the above steps were followed for each permutation, yielding a single mean

t-stat each time.

6. We calculated the rank of the mean t-stat for the unscrambled (real) data relative to

the null distribution of t-stats from the scrambled versions of the data. To compute

the (one-tailed) p-value, we divided this rank by the number of permutations. 5

This overall non-parametric test across all the middle bins of all the (3-10) bin-sets did not

yield a significant effect (1000 permutations, p = 0.16).

5To be clear, the rank is computed as (1 + the number of null values above or equal to the real value). This
way, if the rank of the mean t-tstat for the real data was higher than all of the mean t-stats for the scrambled
data, the numerator would be set to 1, ensuring that the p-value can approach but never reach 0, even with
many permutations. The denominator was set to (1 + the number of scrambled permutations) in order to
include the real data in the count. This procedure follows the prescriptions in Nichols and Holmes (2001).
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2.2.4 Discussion

When we compared the overall performance on RSVP and baseline pairs, we did not see a

significant difference.

But when we binned the RSVP pairs by cue presentation duration, we started to see small

but significant (uncorrected for multiple comparisons) below-baseline effects, especially

for the bins in the lower-middle portion of the duration range. This is consistent with

the nonmonotonic prediction that moderately activated memories would show reduced

accessibility. The non-parametric permutation test that was run across all the middle bins

in all the bin-sets was not quite significant though.

We had not anticipated the small but significant (uncorrected for multiple comparisons)

above-baseline level of recall for the very 1st bin in the 8-tile analysis (and others). If

this effect were robust, it would suggest that very very fast cue presentations (< 100ms)

somehow increase the accessibility of the associate memories.

We did not show the predicted above-baseline effect for slower (higher duration) pre-

sentations. However, this could easily be because the activations elicited by these RSVP

durations lie within the bottom two-thirds of the activation range of the nonmonotonic

prediction shown in Figure 1. In order to test this, we plan to include some even slower

cue presentations (above 500ms).

In this experiment, we sampled the range of cue presentation durations uniformly between

30ms and 498ms. Given that forgetting seems to occur for durations around 200ms, in future

work we will sample this range more finely, and sample the upper range more coarsely.

Indeed, it would be interesting to directly compare the suppression efficacy of the standard

no-think task with the this RSVP task (using a duration of around 200ms for all the pairs).

One nice property of RSVP is that the presentations can be finely tweaked, and perhaps

even calibrated for individual subjects depending on their base rate of intrusions.
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In this analysis, we did not exclude any subjects based on their behavioral performance on

the oddball task. However, it might be worth excluding outliers (as described in Section

4.7) as a screen for inattentiveness.

2.3 Experiment B2 - release from proactive interference

2.3.1 Introduction

In this experiment, we attempted to show a release from proactive interference by weaken-

ing the interfering memories. Our paradigm was based on the standard ‘A-B A-C’ paired

associate learning task (Barnes and Underwood, 1959), but with an additional ‘weakening’

phase inserted between the A-B and A-C study phases.

In a sense, this might seem like a circuitous dependent measure to use. We are trying to

demonstrate that a memory has been weakened by measuring how much it proactively

interferes with other memories later on. This approach was designed to pull apart the

predictions of the pure interference-theory account from the other two structural weakening

accounts.

This experiment employed a novel ‘watermark task’ (described fully in Section 2.3.2), where

subjects were presented with the location cue, while being asked to look for a number of

small, superimposed household object images to distract them from thinking about the

associated celebrity. We hoped that the presented location cue would cause the associated

celebrity’s representation to activate slightly, but the watermark counting task would keep

subjects engaged enough to avoid full recollection of the associate, activating it moderately

as a result.

Subjects will have been presented with the cue for the A-B pairs multiple times in the

watermark task. These presentations should, if anything, create more interfering memories

and more interference at recall. But if subjects were to show a release from proactive

interference for the watermark A-B pairs, that might be evidence that these pairs had in
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fact been structurally weakened - otherwise, how else could more presentations of them

be reducing the proactive interference they cause?

2.3.2 Methods

Participants 57 subjects participated in this experiment, either for course credit or for a

$12 payment. All of the subjects were drawn from the Princeton community. The data

were collected over two separate periods, in Spring 2008 and Spring 2010.

Stimuli The location-celebrity paired association images with labels used in this experi-

ment are described fully in Section 2.2.2.

First study phase In the first study phase, subjects studied 20 of A-B pairs to criterion.

Each of the pairs was shown once, and thereafter subjects’ recall of the associate to a given

cue was tested repeatedly in blocks until they had responded correctly twice for each

pair. This study-to-criterion procedure was designed to enable the formation of strong

associations and to minimize the encoding variability between pairs.

Watermark task After all the A-B pairs had been learned to criterion, subjects entered the

‘weakening’ phase, where we attempted to weaken half of the A-B associations using the

‘watermark’ task. In each trial, subjects were presented with the location A cue from one of

the to-be-weakened pairs with a number of line drawings of household items superimposed

(see Figure 3). Subjects viewed these images for 3500ms, with each of the to-be-weakened

location A images appearing eight times. Subjects were given the following instructions:

1. Pick out and count as many of these superimposed household items as you can.

2. At the same time, try not to think of the person B associates that you previously

learned for the location A background images.
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3. If the person B associate does come to mind, press the space-bar.

Every space-bar press caused the image’s presentation to be extended by another 3500ms.

There was no upper limit on the number of times an image’s presentation could be extended

in this way.

Our aim with this weakening phase was for subjects to partially process the location A

image in the background. By asking them to search for the superimposed household

objects, we hoped to preclude too much processing of the location image. However, from

pilot studies, we fully expected the previously-learned person B associate to intrude into

awareness occasionally, and so we used the space-bar pressing as a kind of self-report, so

that we might at least identify these trials.

We will refer to those pairs whose A cue appeared in this way in the weakening phase

as ‘wiped’ pairs, and the remaining half of the pairs as ‘unwiped’. This terminology is to

distinguish them from the ‘baseline’ D-E pairs, introduced for the first time in the second

study phase, for which no proactive interference existed.

Second study phase After the weakening phase, subjects began the second study phase.

The procedure for this was more or less identical to the first study phase. However,

although the same location A cues were used as before, they were now paired with new

famous person C associates. We predicted that both learning and recall of these A-C

associations should be impaired by the existing, proactively interfering A-B associations,

though less so for the wiped pairs. Furthermore, a number of D-E baseline pairs were

introduced. These consisted of new locations paired with new famous people. Because

these locations only appeared in the second study phase, they provided a baseline level of

performance with no proactive interference from previous associations at all.
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2.3.3 Results

Proactive interference Subjects required significantly more trials to learn the A-C pairs

for the unwiped than the baseline pairs (t(56) = 3.74, p < 0.05). In other words, learning

the earlier A-B pairs proactively interfered with learning the later A-C pairs, relative to the

baseline pairs for which no existing A-C association had been learned.

Comparing wiped and unwiped pairs If the weakening phase was having its intended

effect of weakening the A-B associations, then it should be easier to learn the A-C associa-

tions for the wiped than the unwiped pairs. We considered three metrics for this:

1. Most simply, the number of trials were required to learn the A-C associations to

criterion can be compared for the wiped and unwiped pairs.

The number of trials required to learn the associations to criterion in the second study

phase for the wiped A-C pairs (mean 2.65, SEM 0.05) was highest, followed by the

unwiped A-C pairs (mean 2.64, SEM 0.06) and the D-E baseline (mean 2.51, SEM 0.05)

pairs.

In opposition to our predictions, the wiped A-C pairs took slightly longer to learn

than the unwiped pairs, though this difference was not significant (t(56 = 0.44, p >

0.05).

2. We also looked at the proportion of trials where subjects answered correctly on the

first round of A-C tests, i.e. how often they learned the A-C associations after a single

presentation as a different way of assessing the degree of proactive interference from

the existing A-B associations. There was no significant difference between the wiped

and unwiped pairs on this first A-C trial (t(56) = 0.78, p > 0.05).

3. Finally, we looked at how many trials required to learn each A-C association to

criterion subtracting the number of trials required to learn the corresponding A-B
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Figure 8: Comparison between the wiped and unwiped pairs, using the third metric,
subtracting the number of trials required to learn the A-B association from the number of
trials required for the corresponding A-C association to criterion. Not significant.

association to criterion. There was no significant difference between the wiped and

the unwiped pairs (t(56) = 0.07, p > 0.05). See Figure 8.

2.3.4 Discussion

In the earlier proposal for this dissertation, we reported preliminary data from just 25

subjects in this experiment. These showed the basic proactive interference effect, and a

promising but non-significant trend where the wiped A-C pairs appeared to be learned

more quickly than the unwiped.

We proposed then to collect more data to see whether this difference between wiped and

unwiped pairs would be significant for a larger subject pool. As described in Section 2.3.3,

this difference is no longer close to statistical significance with the larger pool of subjects.

In Section 2.7 we consider a variety of reasons for why we might fail to show a suppression

effect, all of which potentially apply here.
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This is the only experiment we discuss that, if it were to show forgetting, might be hard to

account for within a pure interference-theory account. We discuss this issue in more detail

in Section 5.3.2.

2.4 Experiment B3 - competition-driven learning

2.4.1 Introduction

In this experiment, we set out to show that we could create competition during retrieval

practice between an old association and a new association, and that this competition would

cause weakening of the old association.

As in Experiment B2, this experiment is based on the A-B A-C (Barnes and Underwood,

1959) paradigm, but the dependent measure is quite different. In Experiment B2, we sought

to first weaken the A-B pairs with the watermark task, and then to show a release from

proactive interference when learning the A-C pairs. However, in this experiment, we tried

to use the competition involved in learning the A-C pairs to drive learning, and then we

measured recall for the A-B pairs directly. In our weakening retrieval practice condition,

we tried to maximize the amount of competition from the to-be-weakened A-B pairs, while

trying to keep their activation below the threshold of strengthening. This should maximize

the amount of weakening. In contrast, learning new associations with full exposure should

not elicit competition from the previous A-B associations at all, and so should not cause

them to be weakened.

In some sense, this is an attempt to conceptually replicate Anderson et al. (2000). In

a retrieval-induced forgetting experiment, they showed that retrieval practice for Fr__-

Orange did not cause forgetting. Fruit was the only possible response, and so there was

no competition at retrieval. In contrast (as discussed in Section 1.2.1), retrieval practice

for Fruit-Pe__ produced forgetting of related associates like Apple and Orange because they

competed with (and lost to) Pear at retrieval.
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2.4.2 Methods

Participants 37 participants (18 female) from the Princeton community participated in

this experiment for payment.

Design overview The experiment was divided broadly into three phases:

1. study A-B

2. study A-C - full exposure vs retrieval practice

3. final A-B recall

We are interested in the competition during the study A-C phase between the old B asso-

ciations and the new C associations being learned. The key manipulation is between the

full exposure and retrieval practice conditions (see below). This is designed to modulate the

competition during the study A-C phase:

1. In the full exposure group, the new A-C associations are presented, with no testing.

2. In the retrieval practice group, the new A-C associations are learned by testing - subjects

had to practice retrieving the C association in response to the A cue.

We hypothesized that there would be much more competition in the retrieval practice than

the full exposure group. This competition at retrieval should cause more weakening of the

losing, competing B association. As a result, recall of the retrieval practice A-B pairs during

the final recall phase should be much worse than recall for the full exposure pairs.

See Figure 9 to see a schematic of this design.

Stimuli For the A-B pairs, we used locations and celebrity images with text labels, as

used in previous experiments (Section 2.3.2). As in Experiment B1, we asked subjects to

filter out unfamiliar celebrities before the experiment began (Section 2.2.2).
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Figure 9: Schematic of the design of Experiment B3. From Carroll (2009).
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For the A-C pairs, we used locations and miscellaneous objects. These miscellaneous C

objects were drawn from a mix of different categories (e.g. animals, body parts, household

objects, tools etc.).

Study A-B phase Subjects were presented with all 40 A-B pairs once for 4000ms, then

tested on each of the pairs until they had recalled each successfully once.

Study A-C phase As described in Section 2.4.2, the 40 pairs were divided evently into full

exposure and retrieval practice groups.

For the full exposure pairs, subjects were presented with both the A cue and Z associate

together for 4000ms. Each A-Z pair was presented 7 times, once per run.

For the retrieval practice pairs, subjects were presented with each of the A-C pairs once.

Thereafter, they were presented with just the cue, and required to type in Z associate. Each

A-Z pair was tested 3 times in this way, spread over multiple runs. In order to maximize

the amount of competition from the A-B association, we subliminally flashed a novel image

of the B associated celebrity (as rapidly as the 60Hz computer screen could update) just

prior to asking subjects to recall the Z associate on the third retrieval practice trial. When

questioned afterwards, very few subjects reported seeing these images.

This phase was divided into 7 runs.

Final A-B recall phase Just as in Experiment B2 (Section 2.3), we hope to measure this

weakening in terms of reduced proactive interference when learning the new A-C associa-

tions. The substitution procedure would provide an even more convincing demonstration

of weakening, since adding new associations to the ‘A’ cue should only cause the amount

of proactive interference to increase.
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Pilot experiments to ensure calibrate the full exposure and retrieval practice conditions

Our hypothesis was that the competition during retrieval practice trials would cause weak-

ening of the A-B associations, and so impair recall performance for the A-B retrieval practice

pairs relative to full exposure.

However, it is well-established that the act of recollection in test-driven learning is a more

effective way to learn than purely by presentation (Karpicke and Roediger, 2008). Lower

performance for retrieval practice than full exposure pairs could then be confoundingly

explained in terms of increased retroactive interference from more strongly-interfering

retrieval practice A-C associations.

To compensate for this, we ran a number of pilot experiments (not described) to calibrate the

learning efficacy of the full exposure and retrieval practice procedures. It was determined

that 7 full exposure trials would create memories at least as strong as 3 retrieval practice

trials. Thus, if we were to find lower A-B final recall performance for the retrieval practice

pairs, it could not be explained in terms of greater retroactive interference.

2.4.3 Results

We compared the number of correctly recalled celebrity B associates recalled in the final

recall phase for the full exposure group (mean 18.2, SEM = 0.32) and the retrieval practice

group (mean 18.1, SEM = 0.30). A paired samples one-tailed t-test did not find this

difference to be significant (t(36) = 0.48, p > 0.05) - see Figure 10.

2.4.4 Discussion

Our hypothesis was that there would be competition in the retrieval practice trials when

learning the new A-C associations. The A-C pairs would win this competition, and the

competing A-B associations would lose, impairing subsequent recall of the A-B associations

in the final recall phase.
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Figure 10: Mean number of correctly recalled associates for the full exposure and retrieval
practice conditions. [From Carroll (2009)]

In contrast, there would be little or no competition at retrieval from the A-B pairs in the

full exposure trials, since the direct presentation of the A-C would require no recollection

and provide little opportunity for the B associates to activate.

However, we did not see this difference (see Section 2.4.3). Carroll (2009) describes a

number of post-hoc analyses we ran to try to understand this null effect. We excluded

subjects performing at ceiling using the criteria described by Depue et al. (2006). We also

attempted to determine whether we might have over-compensated in the full exposure

condition by having subjects learn too well. Finally, we examined whether individual

differences in sleep or stress level might be a significant source of variation in between-

subjects recall performance. None of these modified analyses substantively affected the

results.

We had planned a number of more ambitious follow-up experiments combining ideas

from Experiment B2 and this one. However, after failing to show a greater suppression

effect here and in Experiment B2, we decided on a different, more careful approach. In

Experiment B4a, we first attempt an exact replication of a well-established think/no-think
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design, and then work within it to test our ideas about what makes for a good suppression

task.

2.5 Experiment B4a - TNT with emotion stimuli replicating Depue et al (2006)

2.5.1 Introduction

After the previous two failures to produce a below-baseline suppression effect, we decided

to take a try working within a well-established paradigm. While Experiment B4b involves

a novel forgetting task that builds on it, this experiment is just a preliminary sanity check

to make sure that we can replicate the published results.

Depue et al. (2006)’s behavioral think/no-think experiment compared emotional and non-

emotional stimuli to test whether the cognitive control processes involved in emotional

and non-emotional memories differ, and whether emotional memories might actually be

easier to suppress. Indeed, they found greater below-baseline suppression of emotional

than non-emotional memories after repeated no-think trials.

We sought to replicate this below-baseline suppression effect with emotional stimuli6 so that

we might then compare the standard no-think instructions with an alternative suppression

task of our own in Experiment B4b (Section 2.6).

Ultimately, such suppression paradigms might be of significant clinical value to sufferers

of disorders characterized by over-strong memories and associations - see Section 2.6.1.

All of the stimuli, instructions and methods were drawn directly from Depue et al. (2006),

as described in greater detail in Fenstemaker (2009).

6Depue et al. (2006) also varied the number of repetitions (5 and 10). In this experiment, we only included
the 10-repetitions condition, since they found the facilitation and suppression effects for this condition to be
strongest.
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2.5.2 Methods

Participants 23 Princeton undergraduates (19 female, mean age 21) participated in this

experiment for payment. Data from 2 participants were omitted for failing to comply with

instructions (n = 1) or performing at ceiling (n = 1) 7, leaving 21 subjects.

The experiment was divided into study, think/no-think and final recall phases.

Software All of the experiments described throughout were programmed using the

Python Experiment-Programming Library (PyEPL) (Geller et al., 2007), and analyzed using

a combination of custom Python and Matlab (Mathworks, Natick MA) code.

Stimuli 40 paired associates were generated by randomly pairing:

1. An anonymous male or female face image. Each participant was shown either all

male or all female faces. See Figure 11 for example stimuli.

2. A negatively emotional scene image, drawn from the IAPS corpus. See Figure 12 for

example stimuli.

Study phase Subjects were presented with 40 randomly-associated face-scene pairings

(faces on the left, scenes on the right), grouped into two blocks. Subjects were then tested to

criterion in blocks with 2-alternative forced-choice trials until they had responded correctly

to 39 of the 40 pairings. 8

7We used the same criteria applied by Depue et al. (2006) - subjects with 100% or 0% accuracy in more than
half (i.e., 2 or more) of the conditions were excluded.

8The actual study procedure used was more complex than this - it was intended to exactly replicate Depue
et al. (2006), with further details helpfully provided by Depue (B. Depue, personal communication, December
17, 2008), and described fully in (Fenstemaker, 2009).
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Figure 11: Sample neutral anonymous male and female face cue images used in Experi-
ments B4a and B4b.

Figure 12: Negatively emotional scene stimuli, similar to those used in Experiments B4a and
B4b. N.B. The terms of use for the IAPS corpus prohibit reproduction of the actual stimuli,
so these comparable images are provided for illustrative purposes. From Fenstemaker
(2009).
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Think/no-think phase 12 of the 40 pairs were used as baseline pairs and excluded entirely

from this phase. 14 of the pairs were used as think pairs, and 14 were used as no-think pairs.

Each pair appeared once for each of the 10 runs.

Both think and no-think trials consisted of a colored fixation cross presented for 1500ms,

followed by a face for 4000ms, and then a 500ms inter-trial interval.

Think trials were indicated by green fixation crosses, for which subjects had been instructed

to think of the scene previously associated with the face. No-think trials were indicated by

red fixation crosses, for which subjects had been instructed to try not to let the previously

associated scene enter their consciousness.

Final recall phase Each final recall trial consisted of a presentation of a face cue, and the

instruction to type in a 3 or 4 word description of the scene that was paired with it. All 40

faces were tested like this, in a randomized order.

These scene descriptions were scored as correct or incorrect by a coder blind to their

conditions.

2.5.3 Results

As reported by Depue et al. (2006), recall performance on think pairs was the highest of

the three conditions (mean 75.2%, SEM = 0.03), followed by the baseline pairs (70.6%, SEM

= 0.04), with performance on the no-think pairs being the lowest (68.7%, SEM = 0.03) - see

Figure 13.

However, the above-baseline facilitation difference between the think and baseline condi-

tions was not significant, (t(20) = 1.43, p > 0.05), nor was the below-baseline suppression

difference between the no-think and baseline conditions (t(20) = -0.47, p > 0.05). Only the

think vs no-think comparison was significant (t(20) = 1.70, p = 0.05).
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Figure 13: Recall performance by condition for Experiment B4a.

2.5.4 Discussion

While the comparisons between the experimental conditions and baseline did not reach

significance, the broad pattern of results matched published findings.

Importantly though, our replication included only half as many subjects as Depue et

al. (2006). We considered expanding our subject pool to confirm that these effects would

reach significance, but we felt confident enough in the closeness of our replication and

our attainment of the broad pattern of results to move on to Experiment B4b, where we

adopted a different forgetting task in place of the standard no-think task - see Section 2.6.

2.6 Experiment B4b - based on Experiment B4a, with graduated exposure wa-

termark task

2.6.1 Background

Graduated exposure Graduated exposure (also known as systematic desensitization) is a

therapeutic technique used to treat conditions such as phobia, anxiety disorder and post-

traumatic stress disorder (PTSD) (Wolpe et al., 1973). The aim is to reduce the negative
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emotional response to some cue(s). In the case of PTSD, these cues might be evocative and

emotionally loaded stimuli like wartime images, or even something innocuous like a loud

noise. In the case of phobic patients, the cue is the phobic item, e.g. a spider.

When using the graduated exposure approach, subjects are exposed to the aversive stimuli

gradually, starting with a very weak and attenuated cue. At each exposure level, subjects

are taught to relax and keep their negative emotional response under control. As subjects

are able to master their emotional response to low-level exposures, the strength of the cue

is ramped up adaptively.

We can understand why graduated exposure might be a fruitful therapeutic approach for

memory suppression in terms of the oscillating learning algorithm (see Section 1.3.3). In

the case of PTSD, these negative associations have become so strong that they are too

easily cued, even by innocuous stimuli such as loud noises. These memories lie at the

very upper end of the activation range, so it is very difficult to activate them partially, in

order to bring them into the range where they would be forgotten. As a means of avoiding

these too-strong memories from blossoming into full recollections and becoming counter-

productively strengthened, the graduated exposure approach combines very weak cues

and relaxation techniques. 9

2.6.2 Introduction

In this experiment, we reproduced almost all of the methods from Experiment B4a, except

for swapping in a novel ’graduated exposure watermark’ task in place of the standard

no-think instructions.

9An alternative means of partially activating these too-strong memories might be to introduce a competing
representation to provide a laterally-inhibiting dampening effect. Indeed, this would account for the success
of approaches like Eye-Movement Desensitization and Reprocessing (EMDR) (Maxfield, 1999) - subjects are
presented with cues to their negative associations while following a stimulus back and forth with their
eyes. This secondary eye tracking task may provide a competing distraction that prevents the to-be-forgotten
memory from activating fully.
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The watermark task The watermark task was designed with the aim of causing greater

below-baseline suppression than the no-think task, in the following ways:

1. The standard no-think instructions (Levy, 2008) encourage subjects to try and avoid

letting the associate memory enter their consciousness, but they do not specifically

provide a strategy for how to do this (though they do constrain subjects’ behavior

by urging them to fixate and attend to the cue stimulus throughout the no-think

period). Subjects employ a variety of strategies during no-think trials, e.g. allowing

their mind to wander, imagining further details about the cue or substituting a new

association. In contrast, the object-counting aspect of the watermark task provided a

concrete and specific task for subjects to focus on, rather than leaving it up to their

discretion. In this way, we hoped to minimize the number of accidental intrusions

and so reduce the amount of both within- and between-subject variability.

2. The task required subjects to perform a simple visual search with the face cues as a

background so that subjects would be unwittingly and unavoidably processing the

cue image to some degree, triggering partial recollection of the association.

3. Since we expected that the associate representation would be strongest for the early

repetitions, we used the partially-visible early face cue images to try and avoid

activating the associate representation too much, since that might cause it to be

counter-productively strengthened.

4. After multiple watermark trials, we expected that the associate representation would

have been at least somewhat forgotten (Kuhl et al., 2007), and so we gradually in-

creased the visibility of the face cues. If we left the face cues at low-visibility through-

out, we were concerned that only a small amount of forgetting might occur at the

very beginning, after which they would cease to activate the associate representation

sufficiently to cause appreciable forgetting.
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2.6.3 Methods

Participants 46 Princeton University undergraduates (30 women, mean age = 20) partic-

ipated in this experiment for payment. Data from 4 participants were omitted for failing

to comply with instructions (n = 3) or performing at ceiling (n = 1), leaving 42 subjects.

Graduated exposure watermark task For this experiment, we replaced the standard no-

think task used in Experiment B4a with the ’graduated exposure’ version of the watermark

task from Experiment B2.

Just as in Experiment B4a, the pairs were divided into either the baseline, think or wa-

termark groups, and each the think and watermark trials were interspersed. Besides this

change of forgetting task, all other aspects of the experiment remained the same.

Our graduated exposure watermark task was designed to partially activate subjects’ mem-

ory for the scene associates by careful presentation of the face images as cues. Specifically,

we used the following devices to attempt to control the degree of mnemonic activation of

the associated scene representations:

1. We superimposed roughly 12 dark and light household object watermarks over the

face cue background. Subjects were familiarized with these objects at the beginning

of the think/watermark phase. During each watermark trial, subjects were instructed

to focus on counting as many of these watermark objects as they could find. This task

was intended to provide something besides the scene associate to occupy their mind.

2. As in the standard no-think instructions, subjects were also asked to prevent the scene

associated with the background face from coming into their minds.

3. By analogy with the ’graduated exposure’ approach described in Section 2.6.1, we

slowly ramped up the visibility of the background face images over the course of the

think/no-think phase - see this visibility progression in Figure 14.
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Figure 14: Sample stimuli from the forgetting task employed in Experiment B4b. Subjects
were instructed to count the superimposed household object watermarks in each image.
Over the course of multiple no-think trial repetitions, the visibility of the background face
images was increased - the five visibility levels are shown here.

For the first presentations, the face cue images shown were almost unrecognizably

blurred, darkened and grayscaled. After every two repetitions, we reduced the degree

of Gaussian smoothing, increased the brightness and re-saturated the colors, making

the faces more distinct and recognizable each time. By the final, 10th repetition, the

face images had been restored to their original levels of sharpness, brightness and

color saturation.

2.6.4 Results

As predicted, and in line with the results from Experiment B4b (Section 2.5.3), recall

performance on think pairs was the highest of the three conditions (mean 70.2%, SEM =

0.03), followed by the baseline pairs (68.5%, SEM = 0.03), with performance on the no-think

pairs being the lowest (64.1%, SEM = 0.03).

The above-baseline facilitation difference between the think and baseline conditions was

not significant, (t(41) = 0.67, p > 0.05). However, unlike in Experiment B4a, the below-

baseline suppression difference between the no-think and baseline conditions (t(41) = -1.89,

p < 0.05) was significant. As before, the difference between think and no-think items was

also significant (t(41) = 2.22, p < 0.05).
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Figure 15: Recall performance by condition for Experiment B4b.

2.6.5 Discussion

The watermark task We attempted to incorporate ideas from graduated exposure (see

Section 2.6.1) into the design of the watermark task, by steadily increasing the visibility

of the face cue. In this experiment, the schedule for increasing the visibility was held

constant, changing slightly every two repetitions. In other words, the graduated exposure

was not adaptively driven by the strength of the representation we sought to suppress.

So, for instance, if the associate memory were to accidentally intrude halfway through

the watermark phase, it might get strengthened, after which it would become even more

difficult to avoid an intrusion again, since the face cues would be becoming more and more

visible. For this reason, it might be beneficial to adapt the cue visibility in response to some

dependent measure of associate memory strength. One could employ the behavioral trial-

by-trial intrusion responses used by Levy (2008), or attempt something more sophisticated

but noisy based on a covert neural measure (as described in Chapters 3 and 4).

Since the watermark pairs were remembered significantly worse than the baseline pairs,

we can consider the basic goal of the watermark task to have been met. However, further

work is needed to determine whether the counting task, the graduated exposure, or some
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combination of them both, were necessary to cause this below-baseline suppression. In

Experiment B2 (see Section 2.3), we incorporated a variant of this watermark task without

the graduated exposure - in this case, the baseline-suppression effect was not significant.

This might suggest that the graduated exposure played a significant role in the below-

baseline suppression effect here. However, the design, instructions, stimuli and dependent

measure also differed in Experiment B2 so we cannot say this with any confidence.

2.7 General discussion

2.7.1 Summary of behavioral results

Our aim with these behavioral forgetting procedures was to find a way to activate repre-

sentations in a moderate and controlled manner.

1. Experiment B1 showed a small but significant below-baseline effect for one of the bins

in the RSVP task.

2. Experiment B2 failed to show a release from proactive interference when learning A-C

pairs after applying the basic (non-graduated exposure) watermark task to the A-B

pairs in an AB-AC paradigm, despite promising preliminary results.

3. Experiment B3 failed to show suppression of old associations by eliciting competition

from new associations in an AB-AC paradigm.

4. In Experiment 4a, we decided to re-orient by first replicating an experiment design

and stimuli used successfully twice in the literature (Depue et al., 2006; Depue et al.,

2007). We reproduced the overall pattern of results although our subject pool was

too small for them to be significant.

5. In Experiment B4b (based on Experiment 4a), we replaced the standard no-think

procedure with a novel graduated exposure watermark procedure, which combined a
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distracting visual search task, instructions to suppress the associate, and graduated

exposure of the cue over time. This graduated exposure task produced a significant

suppression effect.

2.7.2 Failing to control the activation of the associate memory

There are a number of possible explanations for the null suppression effects in Experiments

B2 and B3. Our central hypothesis relates the degree to which the association memory is

activating during the weakening phase to the degree of strengthening or weakening of that

memory. In order for the memory to be weakened, it must fall consistently in the middle

of the range of activation (see Figure 1). This theory about the shape of the nonmonotonic

curve could be entirely correct, but if the weakening task fails to reliably keep the associate

memory within this middle activation range, we would not see the predicted weakening

effect. There are a number of possibilities for why we might not be reliably activating

memories to the right degree:

1. Too strong

If the weakening task were to activate the associated memory too strongly (towards

the right hand side of the nonmonotonic curve), then the ’weakening’ trials would

actually be counter-productively strengthening the association.

Indeed, this is why we designed the weakening task in Experiment B2 to extend

the duration of a trial after an intrusion. We hoped that this might give subjects an

extra opportunity to bring the activation back down after an intrusion, and break

this vicious cycle of intrusions begetting more intrusions. However, this approach

of extending trials after intrusions could just as easily backfire (see the discussion on

’too much variability’ below).

2. Too weak

On the other hand, if the weakening task were to fail to activate the associated
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memory enough (towards the left hand side of the nonmonotonic curve), then the

’weakening’ trials would have very little effect. If a memory fails to activate at all, it

will be neither strengthened nor weakened.

3. Too much variability in weakening trials

We have considered that our weakening procedure might be activating associations

too strongly, or too weakly. Perhaps the most likely possibility is that there was

considerable variability in the degree to which the associations were activating from

subject to subject, from pair to pair, and from trial to trial. This variability would

cause the memories to be weakened sometimes, strengthened sometimes, and other

times not affected at all. From introspection, it certainly seemed as though sometimes

the background location cue image in Experiment B2 hardly registered at all, while

other times it happened to catch one’s eye and strongly trigger the association.

More complicated still, we should take into account the cumulative, sequential ef-

fect of the weakening trials. An early strong intrusion could cause a memory to be

strengthened, causing it to intrude again and again, getting strengthened each time.

Likewise, a moderate activation early in the weakening phase might cause a mem-

ory to be weakened enough to stay within that moderate range for the rest of the

weakening phase. It might be possible to build a model to capture the cumulative

effect of intrusions in this way, but it would probably need a more refined measure

of memory activation.

2.7.3 Could the stimuli be the problem?

It may be noteworthy that two of the experiments (B2 and B3) that failed to show the

below-baseline suppression effect used the location-celebrity image stimuli. In contrast,

Experiments B4b and B4a used the face-IAPS scene pairs, and showed significant and

nearly-significant below-baseline suppression effects. Likewise, Experiment F7 used dif-

ferent stimuli and also showed nearly significant below-baseline suppression. The only
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exception to this is Experiment B1, which used the location-celebrity pairs and showed

below-baseline suppression for some of the bins.

Might the location-celebrity stimuli be unsuitable for demonstrating a suppression effect?

These celebrity and location images were highly familiar and semantically rich. We know

that the brain has specialized and highly differentiated representations for people and

places. Furthermore, subjects were encouraged to form elaborative encodings between the

location and celebrity associations - indeed, visualizing a person in a location is easy to

do, and is widely used as a highly-effective technique for forming strong and distinguish-

able memories (Yates, 1966). They pictured the celebrities performing silly or memorable

actions, creating strong, vivid, episodic memories.

Taken together, these facts suggest a number of possible explanations for why these stimuli

might (in retrospect) be ill-suited to experiments on memory suppression :

1. There could be considerable variability in encoding of the different pairs. Some

celebrities and locations simply make for memorable associations. For instance,

remembering Michael Jordan in the basketball court is likely to be easy. This encoding

variability is almost impossible to avoid with these stimuli.

Since the pairings and condition groupings were all randomized separately for each

subject, there’s no reason to think that this encoding variability would systematically

affect our results. However, if the encoding variability were to account for a much

greater portion of the variance than the effect of interest, it might simply obscure it.

We did attempt to minimize the encoding variability as best we could, by:

(a) Introducing primacy and recency filler pairs.

(b) Pre-filtering the stimuli separately for each subject to make sure that all the

celebrities were familiar in later experiments.

(c) Checking the across-subject recall performance for individual stimuli to ensure

there were no particular items that were much easier or harder than others to
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remember.

(d) Using a learn-to-criterion procedure during the study phase. Once a pair had

been learned, it was not studied any more, to try and ensure that each pair was

learned to the same fixed criterion level.

But these measures may not have been sufficient.

2. Because these location-celebrity pairings form such strong memories, we may be fac-

ing a ceiling effect. In other words, it may be that our forgetting tasks are weakening

the memories somewhat - but if they are very strong to begin with, the weakening

may not be sufficient to pull them below the threshold for successful recollection

very often. As a result, the suppression effect may be there, but very small - this,

combined with a large degree of encoding variability, would make the suppression

effect almost impossible to detect.

Note that this is a quite separate point from the one raised in Section 2.7.2 regarding

the activation during recollection being too strong. In that case, we were suggesting

that the suppression task might actually be causing strengthening if the activation

of the memory lay at the upper end of the nonmonotonic range. In other words,

both of these issues (the ceiling effect, and the possibility of counter-productive

strengthening) are related to the strength of the location-celebrity memories, but they

are conceptually distinct.

3. Finally, there may be an issue about the nature of the representation of these elabo-

rative, episodic memories. Since both the locations and the celebrities are so seman-

tically rich and highly differentiated, it may be that even after being weakened, the

degraded representations were still easily distinguishable. In contrast, less differen-

tiated noun-noun stimuli might become more confusable after weakening, creating

competition at retrieval, and highlighting the effect of the suppression.

Given all of these concerns, it is unsurprising that many of the previous successful RIF and
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TNT experiments have used noun-noun word pair stimuli (instead of images), since they

may make for less rich, weaker and perhaps more suppressible memories.

2.7.4 Future work

Given the discussion about the potential issues with location-celebrity stimuli, the most

obvious next step would be to re-run the failed experiments using different stimuli. The

RSVP task in Experiment B1 shows the most promise in this regard. Indeed, the success of

Experiment B4b using the graduated watermark task and the anonymous face cue stimuli

provides some cause for optimism in this regard.

Secondly, it would be valuable to determine which aspect(s) of the watermark task (visual

search as a distraction task, the instruction to avoid thinking of the associate, or graduated

exposure of the cue) are critical to its success.

2.7.5 If we cannot control intrusions, perhaps we can at least track them?

Our ability to control the degree of activation of the to-be-forgotten representations is lim-

ited. Both between-subjects variables (e.g. sleep, trauma experience) (Levy and Anderson,

2008) and within-subjects variables (e.g. attentiveness, familiarity) conspire against us. In-

stead, we might be better off accepting that the to-be-forgotten representation is sometimes

going to activate too little, sometimes too much, and sometimes just the right amount to be

maximally forgotten. If we could measure this activation level, and show that it predicts

the degree of subsequent behavioral forgetting, that would provide powerful support for

the theory.

The simplest way to measure intrusions would be to ask subjects after each trial how

much the to-be-forgotten representation had ‘entered their consciousness’. Indeed, this is

the procedure adopted by Levy (2008) and in Experiments B2 and F5. Unfortunately, we

expect this self-reporting to be imperfect, and more worryingly still, might actually make
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it more likely that subjects’ minds will inadvertently stray towards that which they are

seeking to avoid recollecting, in a kind of ‘ironic control’ failure to suppress the intrusions

(Wegner, 1994).

Better still, we would like to have a neural measure of the degree to which the to-be-

forgotten representation is active. In the remaining chapters, we discuss our attempts

to use fMRI as just such a covert, neural measure of the activity of the to-be-forgotten

representation, so that we might relate this to, and predict, the degree of subsequent

forgetting.
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3 Early attempts to use fMRI as a covert measure of memory acti-

vation

3.1 Introduction - measuring the degree of activation of the to-be-forgotten

representations

The behavioral experiments described in Chapter 2 were designed to produce a below-

baseline suppression effect by controlling the degree to which the associate memories

activated. We varied the suppression task, the design, the stimuli, reporting of intrusions

and the dependent measure of forgetting. Despite our efforts to find an experimental

design that would activate the memory reliably at just the right level to cause forgetting, we

remained concerned that the to-be-forgotten associate memory was activating too strongly

on some trials, and too weakly on others. We believe this variability in activation during

no-think trials might be a big part of the reason that it is so hard to reliably and robustly

elicit the suppression effect (see Section 2.7.2).

In response, we attempted to address this concern about variability in memory activation

with fMRI. Introducing imaging obviously will not reduce the variability, but we hoped

that it might allow us at least to measure it.

We ran six pilot experiments to optimize the timing, stimuli, design and analysis parameters

for this purpose. In this chapter, we consider just two of these pilots (Experiments F5 and

F6), and how the lessons learned from them shaped the design of our final experiment (F7).

Finally, in the next two chapters, we will discuss this final, most evolved experiment (F7)

for using fMRI to provide a covert, neural measure of a memory’s activation with the

think/no-think paradigm.

In the next section, we will consider prior neuroimaging work that has motivated the

designs and analyses of these experiments, before introducing the MVPA approach we

adopted to tackle these questions.
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3.1.1 Previous work

Newman & Norman (2010) Newman and Norman (2010) set out to test the oscillat-

ing learning algorithm’s (Section 1.3.3) nonmonotonic predictions about how competi-

tion drives learning in negative priming using MVPA methods applied to EEG. In their

paradigm, subjects were presented with two stimuli at once, and asked to make a judgment

about one, while ignoring the other. They predicted that, as a result of this competition,

the ignored competing representation would be weakened. As a result, subjects should be

slower to make judgments about this previously ignored item than an unseen control item.

This basic behavioral negative priming effect has been shown before, though it is small and

unreliable (see Section 1.2.4).

Newman and Norman (2010) used classifiers to measure the neural activation of the ignored

stimulus. They predicted that the activation level of the competing, ignored stimulus

should predict the size of the subsequent negative priming effect - specifically, a moderate

level of excitation should show the most negative priming, while a high level of excitation

should show the least. Indeed, this is exactly what they found, even showing a (non-

significant) hint of positive priming for the ignored stimuli that activated most, as though

subjects had accidentally attended to them, allowing them to win the competition. This

success motivated our attempt to measure the activation of associated memories in a

think/no-think task, and thus predict whether they will be remembered or forgotten (Section

1.4).

Anderson et al (2004) Anderson et al. (2004) were the first to run a think/no-think experi-

ment with fMRI, following the paradigm in Anderson and Green (2001) fairly closely. They

argued that forgetting involves an active control process, since a variety of cognitive control

areas were found to be more active during the no-think than the think trials - these areas

included bilateral dorsolateral prefrontal cortex, bilateral ventrolateral prefrontal cortex,

BA 45 and BA 46 and the ACC.
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The only area significantly less active for no-think than think trials was the hippocampus,

perhaps because hippocampal recollection is suppressed by these frontal control processes.

In keeping with this idea of hippocampal activity tracking subsequent memory, they found

greater hippocampal activity during remembered than forgotten think trials. However, the

hippocampus’ role seems to be more complex than this. They also found an interaction -

while the hippocampus was less active for no-think trials overall, it was more active for

the forgotten than remembered no-think trials 10. This is the opposite of what might be

expected if hippocampal activity straightforwardly predicted subsequent recollection.

Anderson et al. (2004) suggest that this greater hippocampal activity for forgotten than

remembered no-think trials may reflect momentary intrusions of the suppressed forgotten

items during suppression, strongly triggering a control response which in turn dramatically

suppressed the no-think memory. Corroborating this, they found that activity in the right

dorsolateral prefrontal cortex negatively correlated with hippocampal activity.

Kuhl et al (2007) Kuhl et al. (2007) adapted the retrieval-induced forgetting paradigm for

fMRI to test hypotheses about the effects of competition-driven learning over time. In their

experiment, subjects practiced cue-associate pairs, where each cue had been studied with

multiple associates (e.g. ATTIC-dust, ATTIC-junk).

They suggested that during the retrieval practice period, when retrieving ’ATTIC-dust’ (the

practiced pair), there would be competition from ’ATTIC-junk’ (the unpracticed pair). This

unpracticed pair would compete at retrieval, lose, and be suppressed. After multiple such

retrieval practice trials, there should be less competition from the (now weaker) unpracticed

pair.

If conflict detection and resolution processes are recruited during retrieval practice compe-

tition, we would expect them to be highly active early in the retrieval practice phase, but

less and less active as the competition diminishes after multiple retrieval practice trials.
10Furthermore, this effect was bigger for subjects who showed a large below-baseline suppression effect for

no-think trials.
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Indeed, they found that each subject’s overall below-baseline suppression score (similar to

the one described in Section 4.3) correlated with their reduction in ACC and right vlPFC

over the course of the retrieval practice phase. They also showed that hippocampal acti-

vation early in the retrieval practice phase correlated with initial engagement of the ACC

and later competitor forgetting. Taken together, this would fit with the idea that early

competition at retrieval triggers conflict detection and control responses, which in turn

lead to suppression over multiple trials of the intrusive, competing recollection, eventually

leading to less conflict detected and control exerted.

However, this does not conclusively establish that these frontal processes are inhibitory.

As discussed in Sections 1.3.1 and 1.3.3, prefrontal cortex’s cognitive control role may be to

provide targeted excitation, rather than inhibition (Miller and Cohen, 2001).

3.1.2 Multi-voxel pattern analysis (MVPA)

In all of our fMRI experiments, we make heavy use of the multi-voxel pattern analysis

(MVPA) approach for analyzing fMRI data (Norman et al., 2006). Until recently, the

conventional approach for analyzing fMRI datasets was to run a mass-univariate set of

statistical tests to generate brain maps, based on the general linear model (Worsley and

Friston, 1995), with each statistical test being run separately on each voxel. In contrast,

MVPA analyses incorporate information from multiple voxels simultaneously, usually

through the use of machine learning algorithms - we will focus here on the use of pattern

classifiers.

What is a pattern classifier? Classifiers are algorithms that learn to discriminate between

different classes of patterns - they can be used to ask ’how can we recognize a pattern of

brain activity as being associated with one cognitive state versus another?’ by learning

which patterns of voxel activity are predictive of one class of cognitive states vs another.

Once trained, they can be used to guess which cognitive state is associated with a given
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pattern of brain activity.

Classifiers are trained with a series of labeled observations. For most of these analyses,

an observation consists of a subset of voxel activations from a single brain image as the

input, and a single output unit per cognitive state category. During training, the output

unit activation values are specified by the experimenter, and the classifier learns the set of

weights that best map from the input values to these desired output values (Norman et al.,

2006; Polyn et al., 2005; Haynes and Rees, 2006). During testing, the classifier is provided

with the input values alone, and it generates its ’guessed’ activation values for each of its

output units.

To make a guess about which class (i.e. cognitive state) is associated with a given brainstate

(i.e. pattern of voxel activities in a single brain image), we can simply pick the classifier

output unit with the highest activation. However, for many of the analyses described in

this and the following chapter, we will make use of these continuous-valued output unit

activities directly, rather than simply asking which is the highest.

Too many voxels, not enough observations In principle, the classifier will learn larger

’weights’ from input voxels that contain useful information for the discrimination being

learned, and will learn to ignore (by setting the weights to be smaller) voxels whose

activity does not discriminate between the classes. However, we have many more voxels

than observations, and so this problem is under-determined. Regularized classifiers deal

better with this issue by incorporating a ’penalty’ term - this effectively incurs a cost for

non-zero weights, inducing the classifier to pick just a small subset of voxels in its solution.

Even with regularization though, we have found it to be helpful to use feature selection

algorithms to whittle down the number of voxels (’features’) that the classifier sees, by

excluding voxels that are found to be least significant by a mass-univariate GLM contrast.
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Using MVPA and mass-univariate approaches in complementary ways Norman et

al. (2006) discuss some of the advantages of the MVPA approach. Most critically for

our purposes, the classifier provides a sensitive estimate of the degree to which different

cognitive states, processes and representations are present (i.e. active) in the brain on an

image-by-image or trial-by-trial basis. This is the means by which we will attempt to read

out a covert, neural measure of recollections and intrusions during think and no-think

trials.

We will still rely on the standard mass-univariate GLM approach for feature selection,

defining regions of interest, and for visualization of the regions whose activity differs

between cognitive states of interest.

Peeking One important caveat needs to be mentioned - when conducting MVPA analyses,

it is critical that none of the same observations used to test the classifier are present during

training. Otherwise, such ’peeking’ spuriously elevates the classifier’s apparent ability to

generalize (just as students who sneak in the answers to an exam get more answers right

without having learned the material), and would invalidate any further conclusions drawn

based on the classifier’s activation levels.

Likewise, observations that will be used to test the classifier must be hidden from the

feature selection algorithm. Otherwise, the same spurious improvement in generalization

would be observed, just as a student told exactly which pages of the textbook to read would

be at an advantage in an exam, even if they were not told exact questions will be asked.

Cross-validation In many of our analyses, we will be training the classifier on one phase

of the experiment, and testing it on a different phase. In this case, it is easy to avoid peeking.

However, sometimes, we will want to train and test the classifier on observations from the

same phase. In this case, we will carefully separate the observations into distinct training

and testing subsets. Following the standard cross-validation procedure (Polyn et al., 2005;
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Norman et al., 2006), we will run this procedure multiple times, each time with a fresh

classifier, holding out a different subset of the observations as the testing set. In this way,

each observation takes a turn at being part of the testing set, to provide a fair estimate of

the classifier’s ability to generalize.

Balancing conditions within the training and testing sets The classifier is seeking sta-

tistical regularities in the training set that it can exploit to help it to generalize to the testing

set. If, for instance, more of the training observations were drawn from one class than the

other, the classifier would learn to be biased a priori to guess the more numerous class.

For our purposes, this complicates and confounds our ability to interpret the classifier’s

activations. There are multiple approaches for correcting and adjusting for this imbal-

ance, but we will adopt the simplest and least problematic - we will randomly exclude

(’under-sample’) observations from the more numerous class(es) to ensure that the classes

are balanced, both within the training and testing sets.

3.2 Pilot experiment F5 - attempting classification of recall success

3.2.1 Introduction

In this pilot experiment, we aimed to calibrate behavioral, scanning and classification

parameters to optimize the classification of successful from unsuccessful recalls. In this

way, the classifier’s activation would provide a measure of memory retrieval strength. We

could then apply this measure of retrieval strength to the no-think trials, as an index of the

activation of the associate memory. However, this pilot experiment did not include any

no-think trials.

3.2.2 Data collection methods

Participants 7 subjects participated in a paid fMRI experiment.
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Overview The scanning portion of this experiment consisted of two main phases: a brief

study phase, followed by a longer cued recall phase. Participants were scanned during

both the presentation and cued recall phases.

Study phase Participants were rapidly presented (around 2500ms per trial 11) with a

sequence of 160 location-celebrity associations (e.g. Fountain - Jack Nicholson). Each

stimulus was presented just once, and consisted of both an image and a text label, just as

in Experiment B1 (Section 2.2.2).

Context shift phase In between the presentation and cued recall phase, we introduced a

2-minute imagination/autobiographical memory task (picturing the floor plan of your par-

ents’ home) that was intended to introduce a context shift, and slightly reduce recollection

performance in the cued recall phase.

We ran the anatomical scan during this context shift phase.

Cued recall phase Each cued recall trial consisted of:

1. A 4000ms presentation of the cue (e.g. Fountain - ???), during which subjects at-

tempted to form a vivid recollection of the associate.

2. A 4000ms period during which they pressed a button to indicate: 1) successful

recollection; 2) lack of recollection, or 3) a false recollection. They were presented

with the correct associate at the same time as this response so that they were able to

make the judgment. The ordering of the buttons was randomized on each trial.

Each cued recall trial was separated by a 6-8s fixation interval.

11This was varied from subject to subject - see Section 3.2.2.
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50% recall performance We sought to bring subjects’ behavioral recall performance close

to 50% - this would provide the classifier with many examples of both successful and

unsuccessful recalls. To this end, we ran an earlier behavioral practice experiment with

separate stimuli to estimate each subject’s overall recall performance - we used these results

to calibrate the study presentation timing individually for each subject by hand, setting

a faster or slower presentation rate to adjust their recall performance during the scanned

cued recalls.

2-back task to familiarize locations In order to minimize the variability between stimuli

due to familiarity, we ran participants in a simple 2-back task before the study phase, to

familiarize them with the location images.

We also asked each subject to filter out any celebrities from the pool that they were unfa-

miliar with.

3.2.3 Analysis methods

We discuss our scanning parameters, preprocessing and classification procedures in more

detail in Section 4.4 and 4.5. A summary description follows.

To select our features, we picked 1000 voxels from across the whole brain whose variabil-

ity was best explained by a GLM modelling successful and unsuccessful recollections as

separate regressors.

We trained a regularized logistic regression classifier 12 to distinguish successful vs unsuc-

cessful recollections (ignoring false recollections), using just the cue presentation volumes

at the beginning of each trial, i.e. while participants were striving to recollect the associate.

In order to equate the number of observations in the successful and unsuccessful recall

classes (see Section 3.1.2), we used a leave-one-trial-out cross-validation procedure. Specif-

12The MVPA Toolbox (Detre et al., 2006) train_logreg.m function, with a penalty of 50.
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ically, we first threw away surplus observations from the over-represented class to create

balanced training sets, keeping aside one observation from each class for testing. We de-

fined a 20-second ’moat’ either side of each testing observation that we excluded from both

training and testing in order to avoid spurious generalization resulting from the haemo-

dynamic lag. We ran this entire leave-one-trial-out procedure 50 times, each time leaving

out a randomly chosen pair of trials (one per class), re-running the GLM to pick the input

voxels, and training a fresh classifier.

3.2.4 Results

Across 7 subjects, we were able to classify successful vs unsuccessful recollection with

around 70% accuracy (where chance performance would be 50%). Although we tried a

large number of different parameterizations of the basic classifier setup (e.g. varying the

number of voxels, classifier type, GLM details), none of these alternative versions provided

any improvement over our default parameters.

3.2.5 Discussion: issues with Pilot Experiment F5 that prompted design decisions in

Pilot Experiment F6

Based on the results from Pilot Experiment F5, we made a number of improvements to our

experimental design.

Switching from classifying recall success to multiple association categories We were

able to classify successful vs unsuccessful recollections significantly above chance (70%),

but nonetheless, we had reservations about this approach.

Primarily, we were concerned about our ability to keep behavioral recall performance

reliably close to 50%. Our efforts to calibrate each subject’s presentation timing to affect

behavioral performance proved to be labor-intensive and error-prone, and we worried that
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we might sometimes end up with very few training trials (after balancing our two classes)

if a subject’s performance varied too much towards floor or ceiling.

Secondly, we were concerned that the feature selection and classification might select

voxels that would work during training on think trials for distinguishing successful from

unsuccessful recall, but that some of these voxels might not generalize well to no-think

trials. For instance, the hippocampus has been shown to activate more for successful than

unsuccessful recalls in think trials, which would make it seem to be an ideal region of

interest for training a classifier. However, its role in no-think trials is more complicated -

Anderson et al. (2004) reported that it responded more to forgotten than remembered no-

think trials (see Section 3.1.1). Finally, the hippocampal response changes over the course

of the no-think phase as a function of the amount of suppression (Levy, 2008).

Given these concerns about having enough successful and unsuccessful recall trials, about

generalizing from think to no-think, and about the activation profile changing over the

course of the no-think phase, we elected to try a different strategy for using classifiers to

read out the activation of associate memories.

Until now, we had used celebrity images as our sole association category. In the next

experiment, we introduced two new association categories (animals and tools). From now

on, instead of trying to train the classifier on successful vs unsuccessful recalls, we would

be training the classifier to discriminate between these association categories. Then we

could read out the activity of the relevant classifier output unit for the associate in each

trial as a measure of its recollection activation, following the approach used by Newman

and Norman (2010).

This decision simplified things considerably. Firstly, it meant that we could dispense

with the behavioral performance calibration step. Instead of trying to push behavioral

performance down to 50%, we could now afford to push it as high as possible, since we’d

only be training the classifier to discriminate the association categories on correct think

trials.
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Secondly, it meant that we could do much more to minimize the encoding variability

between pairs. In Pilot Experiment F5, we rapidly presented the pairs at study a single

time. We could not test whether subjects had successfully encoded any of them since that

act of recollection would have cemented the association (Karpicke and Roediger, 2008). It

was impossible then to determine which pairs had been successfully encoded during the

study phase without inadvertently boosting recall performance at the same time. Having

decided to distinguish between image categories on correct trials, we could afford to allow

behavioral performance to improve somewhat. As a result, we could now ensure that

subjects studied each pair to criterion during the study phase, minimizing the encoding

variability between pairs.

Maximizing data We made a number of smaller design decisions to try and maximize

the amount of data that we would have to train and test the classifier on.

We kept the inter-trial intervals between study trials small, but grouped trials with the

same image association category together into ’miniblocks’. The haemodynamic response

would smear the volumes within a miniblock together, but since they would be labeled the

same, this wouldn’t present a serious problem. This allowed us to shorten the duration of

the study phase.

We also tightened up the timing of the wipe trials, so that we might pack more trials into

the wipe phase.

Finally, we scanned each subject twice in two separate sessions, in the hope that we might

be able to combine the data from the two sessions.

Lots of analysis options We wanted to give ourselves a number of options for data

analysis. With this design, we could train on the study presentation phase, the study

test phase, or the think trials. We could choose to label our trials based on 1) successful

and unsuccessful recalls, 2) the three different image association categories, or even 3)
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behavioral responses during the think and no-think trials.

3.3 Pilot Experiment F6 - first attempt at fMRI think/no-think experiment

3.3.1 Introduction

This was our first attempt to run a full think/no-think experiment in the scanner. As

described in the previous section, we had learned a number of lessons from our early

classification pilots, and so this experiment was designed to maximize the number of think

and no-think trials on which to train, to include multiple associate categories, and to allow

for multiple classification approaches.

Notably, following Levy (2008), we also asked subjects to report how much the associate

memories were intruding during each no-think trial.

3.3.2 Data collection methods

Participants 5 subjects participated in a paid fMRI experiment spanning 2 sessions.

Study presentation phase I Subjects were presented with 60 pairs. Each pair consisted

of a location cue, associated with either an animal, a celebrity or a tool. Both stimuli in

the pair consisted of an image and a text label. Pairs were grouped into ’miniblocks’ of

the same associate category - for instance, we might present two tool pairs, followed by

two celebrity pairs, followed by two animal pairs, and so on. Each pair was presented for

3750ms with a 250ms inter-trial interval.

Study test phase Subjects were tested on each pair once. Each test trial consisted of three

parts:

1. A 4000ms cue-only presentation during which subjects were asked to recreate a vivid
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and accurate mental image of the animal/celebrity/tool associated with that location

cue.

2. A 2000ms response period in which subjects were then shown the correct association,

and asked to indicate whether they had correctly recalled it:

(a) YES = "you could have accurately stated the animal/celebrity/tool’s name/label

aloud before the correct answer was displayed"

(b) NO = "if you drew a mental blank"

(c) MIS = "if you had recollected the wrong thing, or only partially recollected the

right answer".

The orderings of these three button options were randomized on each trial.

3. A 6000ms inter-trial interval during which subjects performed a simple brightness-

change fixation task (see Section 4.2.2).

Think/no-think phase The 60 pairs were divided into 36 ’think’ pairs, 12 ’no-think’ pairs

and 12 ’baseline’ pairs:

Each think trial consisted of three parts:

1. A 4000ms presentation of the location cue alone, outlined in a bright green rectangle.

This indicated to subjects that they should recreate a vivid and accurate mental image

of the animal/celebrity/tool associated with that location cue, just as in the study test

trials.

2. A 2000ms response period in which subjects were asked to indicate whether they had

correctly recalled the association, much like the study test trials (YES, NO, MIS). Un-

like the study test trials, subjects were not shown the correct association during these

think trial response periods, and so we did not have any independent verification of

the accuracy of their judgments.
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3. A 6000ms inter-trial interval during which subjects performed the same fixation task

as before.

Each no-think trial consisted of three parts, mirroring the timing and structure of the think

trials:

1. A 4000ms presentation of the location cue alone, outlined in a bright red rectangle.

This indicated to subjects that they should avoid thinking about the associated animal,

celebrity or tool. Subjects were asked to perform a simpler version of the ’watermark’

task (first described in Section 2.3) during these no-think trials that would simultane-

ously force them to attend to the location cue while distracting them from recollecting

the associate - they were told that some of the location cue images would contain

zero, one or two small watermark images of a sun. Their job was to scan over the

location image, and press a button every time they noticed one of these watermarks.

2. A 2000ms response period in which subjects were asked to indicate whether they had

experienced an intrusion of the associated animal, celebrity or tool.

(a) NONE = no intrusive recollection of the associated image

(b) SOME = some recollection of the associated image

(c) LOTS = strong recollection of the associated image

3. A 6000ms inter-trial interval during which subjects performed the same fixation task

as before.

The baseline pairs did not appear at all during the think/no-think phase.

Recall phase In this phase, subjects’ recollections of the associations were tested, much

as in the think trials.
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Subjects remained in the scanner for this phase while we ran the anatomical scan. As a

result, we do not have functional data for these recalls, and could afford to dispense with

the inter-trial interval, leaving just the 4000ms location-only cue and the 2000ms recall

response.

Study presentation phase II Finally, we re-represented all of the pairs once more, just as

in study presentation phase I. We included this extra study presentation run because in the

hope that these data would make good training data for the classifier. However, in pilots,

we had found that including two study presentation runs as well as a study test run raised

the level of behavioral recall performance during the think/no-think phase too high. By

including this study presentation phase at the end, we benefited from the extra training

data while avoiding the boost in behavioral performance.

Each subject was scanned in this way twice, on separate days. These two sessions were

identical in structure, but employed distinct stimuli.

3.3.3 Methods - classification

There are many options for training and testing the classifier in this experiment. The main

analysis we ran involved training the classifier on the study-presentation and study-test

phases, and testing it on the no-think trials. The classifier was trained to discriminate

between the three associate categories.

3.3.4 Results - classification

Cross-validation performance on the study presentation phase for the three association

categories was 51%.

Generalization performance to the think trials when classifying the three association cate-

gories was 50%.
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Generalization performance to the no-think trials when classifying the three association

categories was 37%.

Chance performance would be 33%.

We ran many more analyses than this, but for clarity of exposition, we will not describe

them.

3.3.5 Discussion: issues with Pilot Experiment F6 that prompted design decisions in

Experiment F7

Behavioral performance was too high, not enough below-baseline suppression Despite

our attempts to keep behavioral performance at least a little below ceiling, we found that

subjects performed very well on the final recall phase, and showed very little suppression

- in most cases, a correct recollection during the study test phase almost always led to a

correct recollection in the final recall. For our final experimental design, we made further

modifications to deal with this.

We split data collection across days. Subjects studied the associations in a behavioral phase

on day 1, and then were scanned during the think/no-think phase on day 2.

We changed the location/celebrity stimuli to try and make them less vivid, sticky and

verbalizable.

We also modified the instructions - instead of urging subjects to use elaborative encoding to

form a vivid mental image that associated the associate with the cue, we simply instructed

subjects to "form a connection between the noun and the photo so that when you are given

the word, you can recall the photo".

Removing the no-think intrusions judgment Based on Levy (2008), we expected that we

could ask subjects to report whether they had experienced an intrusive recollection during

the no-think trials without affecting the below-baseline behavioral suppression effect for
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the no-think pairs. However, given the fragility of this below-baseline suppression effect,

we removed this intrusion report from the no-think trials, just in case. This also freed up

some scanning time, allowing us to include more no-think trials.

Maximizing think and no-think data We wanted to maximize the number of think and

no-think trials for training and testing the classifier. To this end, we chose not to scan

during the study portion of Experiment F7, and devoted the entirety of our scanning time

to the think/no-think phase.

We also speeded up the timing of the think and no-think trials. We shortened the inter-trial

interval from 6000ms to 4000ms - this involves a difficult tradeoff between being able to

include more trials, but potentially contaminating each trial with the haemodynamic lag

from the previous trial. Given that we had determined from Pilot Experiments F5 and F6

that the second volume of the 4000ms cue-only presentation provided the highest signal,

this would leave at least 6000ms between volumes, which we hoped would be enough.

As described above, we also removed the intrusion reports during the no-think trials, but

retained the responses for the think trials (though modified to 4-category forced choice

judgments).

Heterogeneity of image categories We had chosen animals, celebrities and tools as our

image categories since we had good reason to believe that these categories are represented

saliently by the visual system, and should therefore be distinguishable for the classifier.

However, the individual exemplars within each category were unavoidably heterogenous

and richly semantically differentiable. Even though George Bush and Britney Spears

(say) are both classed as celebrities, the difference in their mental representations might

be nearly as large as the difference between representations of George Bush and (say) a

fountain pen. In other words, the within-category hetereogeneity of our stimuli might have

made it hard for the classifier to define clear boundaries separating the representations of

the different categories. To remedy this, we used different stimuli, chosen to have fewer
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pre-experimental semantic associations and greater homogeneity within-category: cars,

anonymous male faces, bedroom scenes and shoes. As described in Section 4.2.2, we

weighted the frequencies of these categories to emphasize the face and scene categories

that we expected to have most success classifying.

We also hoped that the introduction of scenes as an associate category would provide

another strongly classifiable category besides faces. This would alleviate our concern that

classification performance in this experiment was being driven by the identifiability of the

face category.

No-think task The simple watermark-detection task that we used for the no-think trials

was designed to provide subjects with a task that would distract them from recollecting

the association, while still forcing them to attend to and process the cue. As in Experiments

B2 and B4b, we had hope that this kind of task would control and direct subjects’ mental

processes more closely than the rather open-ended instructions often used in think/no-think

experiments, e.g. “try to avoid allowing the associate to enter your consciousness”. Based

on preliminary pilot behavioral results with a similar watermark task, we had reason to

believe that this might be an effective no-think task - however, as described in Experiment

B3, collecting more subjects in the same behavioral paradigm subsequently undermined

this result.

So, in order to more faithfully replicate succcessful think/no-think experiments in the

literature, we adopted the more straightforward and standard no-think instructions for the

next version of the experiment (B. Levy, personal communication, September 6th, 2009).

Functional localizer run Since we now planned for the study phase to occur on the

previous day (to bring down behavioral performance), this freed up some extra scanning

time.

We added a short block-design 1-back task as a ’functional localizer’ at the end of the exper-
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iment. The data from this task could be used to demarcate functional regions in individual

subjects that responded vigorously to the new face and scene associate categories. The

data could also be used for feature selection and classifier training.

3.4 Discussion

We have described two fMRI pilot experiments that laid the path for our final, most evolved

attempt to use fMRI to provide a covert, neural measure of a memory’s activation within

the think/no-think paradigm.

As a result of this process of evolution, we attempted to incorporate the best aspects of all

the experiments so far in Experiment F7. As described in the following chapter, Experiment

F7 showed a nearly-significant behavioral below-baseline suppression effect, above-chance

classification of association category on no-think trials, and we were able to use the MVPA

readout of memory activation for each no-think trials to show the predicted nonmonotonic

relationship with subsequent recall.
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4 Experiment F7 - main fMRI think/no-think experiment

4.1 Introduction

In this experiment, we sought to directly test our hypothesis relating memory activation to

its subsequent accessibility, as motivated by the previous chapter (Section 3.1). We hoped

to measure how much a memory was activating during a think/no-think paradigm, and to

predict the likelihood of that memory being correctly recalled in a later cued-recall test. To

recap, in Section 1.3.3, we hypothesized that:

1. trials on which the associated memory activated least would show middling recall

performance

2. trials on which the associated memory activated moderately would show the worst

recall performance

3. trials on which the associated memory activated most would show the best recall

performance

In this chapter, we describe the analyses for Experiment F7, designed to test this set of

predictions.

Broadly, we tried two distinct approaches in parallel: one based on MVPA pattern classifica-

tion, and one using regions of interest (ROIs; defined anatomically by hand in conjunction

with a functional GLM contrast).

A number of decisions had to be made along the way, each of which could materially

affect the results. To determine which of these decisions were consequential, we reran this

analysis a few different ways, described below.
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4.2 Methods - data collection

Participants 31 subjects (19 female, aged 18-35) participated in a paid experiment span-

ning 2 days, advertised as an experiment on ’attention and mental imagery’. All of the

subjects were native English speakers, and were drawn from the Princeton community.

One subject was excluded for falling fast asleep during the scanning, leaving 30 subjects.

Our paradigm was based on the think/no-think paradigm, first described by Anderson and

Green (2001), and later adapted for fMRI by a number of researchers, including Anderson

et al. (2004), Depue et al. (2007) and Levy (2008). We discuss the think/no-think paradigm

in more detail in Section 1.2.2, and also in Pilot Experiment F6. In essence, subjects learned

paired associations, practiced recalling some of them and suppressing others, and then

were finally tested on their recall for the associates.

Subjects received printed instructions before each phase of the experiment. They were

asked to read these, before discussing them carefully with the experimenter before each

phase, to ensure their understanding and compliance.

4.2.1 Study phase (day 1, outside the scanner)

On the first day, subjects learned a set of paired associations between words and images.

The words were common, imageable nouns (e.g. ’arrow’, ’fountain’ and ’steamboat’), and

the images were photographs drawn from four categories (1/3 faces, 1/3 bedroom scenes, 1/6

cars and 1/6 shoes). See Section 4.2.5 for further details on stimuli choices and generation.

Initial presentations Each of the pairs was presented once initially. In each presentation

trial, the cue word appeared alone for 1500ms (to ensure that subjects attended to it), and

then both the cue word and associate image were presented together for 4000ms - see

Figure 16.
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Figure 16: Study phase - initial presentations

Testing with feedback For the rest of the study phase, subjects’ recollection of each of

the paired associates was tested using cued recall in a randomized order. For each pair,

they were shown the cue word for 4000ms, then asked to make a 4-alternative forced

choice for the category of the associated image (2000ms time limit). If they were correct,

they were then asked to make a 4-alternative forced choice between 4 individual, familiar

exemplars from that category (2500ms time limit). Both these 4-alternative forced choice

tests used button presses and randomized orderings. After each button press, subjects

received either a red ’X’ or a green ’:)’ as brief feedback (750ms). If their responses on

either of these forced-choice cued recall tests were wrong (or too slow), the cue and image

paired association were re-presented together for 4000ms. See Figure 17.

In order to minimize encoding variability due to primacy and recency effects, two filler

pairs (1 car associate and 1 scene associate) were inserted at the beginning and two more

at the end of the presentation run and each testing run - these pairs did not appear at all in

the rest of the experiment.

Each time a subject answered both the category and exemplar tests for a pair correctly, that

pair was marked as ’correct’, and was dropped from further testing. In other words, every

pair was tested (with re-presentation for wrong responses) until it had been answered

correctly once. This study-to-criterion procedure was designed to enable the formation of

reasonably strong associations and to minimize the encoding variability between pairs.
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Figure 17: Study phase - testing with feedback. In this case, the subject answered the
category correctly but the exemplar incorrectly, and so received feedback.

Following previous think/no-think experiments (B. Levy, personal communication,

September 6th, 2009), we aimed for subjects to achieve a behavioral performance of around

70% on the final recall phase (on the next day). Through pilot testing (not described), we

adjusted the timing, study-to-criterion and exemplar distinguishability to achieve roughly

this level of performance.

4.2.2 Think/no-think phase (day 2, inside the scanner)

During the think/no-think phase, the 54 pairs were randomly assigned to either the think

(36), no-think (8) or baseline (10) groups. For the think pairs, subjects practiced recalling the

associates. For the no-think pairs, they practiced suppressing recollection of the associates.

The baseline pairs did not appear at all during this phase. This think/no-think/baseline

grouping was the central experimental manipulation, and provided the core data to which

the classifier was applied.

The think/no-think phase was divided into 6 runs. Each think pair appeared once per run,

and each no-think pair appeared twice, for a total of 6 repetitions per think pair, and 12

repetitions per no-think pair. The associations for the think trials were divided into 1/3
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Figure 18: Think trial.

faces, 1/3 scenes, 1/6 cars and 1/6 shoes. The associations for the no-think and baseline

trials were divided evenly into 1/2 faces and 1/2 scenes. The ordering of the trials was

randomized.

Each think trial consisted of a word-only cue presentation (4000ms), a cued recall test

(2000ms), and then a fixation task (4000ms). During the word-only cue presentation,

subjects were cued with the word for that pair in green ink and asked to form a vivid and

detailed mental image of its associate for as long as the word is on the screen. Then, for

the cued recall, they responded to a 4-alternative forced choice with the category of the

associate. For the fixation task, subjects were asked to fixate on a small "+" in the center of

the screen, and to count silently how many times it changed brightness for as long as the

cross remained on the screen. See Figure 18.

Each no-think trial consisted of a word-only cue presentation (4000ms) and then a fixation

task (4000ms). During the word-only cue presentation, subjects were cued with the word

for that pair in red ink and asked to try as hard as possible to avoid thinking about the

associated photograph - to keep it from entering consciousness. Subjects were told that they

could accomplish this goal in any way they saw fit, as long as they kept paying attention

to and looking at the red word throughout the presentation period. The fixation task was

the same as for think trials. See Figure 19.
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Figure 19: No-think trial.

The think and no-think trials were fairly similar in structure and timing. Both started with

a word-only cue period (though with different tasks), and ended with the fixation task.

However, the think trials also included the cued recall test in the middle.

Note that there were no image presentations or feedback given during any part of the

think/no-think phase.

The detailed instructions for the no-think trials attempted to forestall potential misunder-

standings and undesirable strategies, drawing on experience from previous experiments

and in consultation with Benjamin Levy (B. Levy, personal communication, September 6th,

2009). Notably, subjects were discouraged from deliberately thinking about the no-think

associates at any point during the think/no-think phase and from averting their gaze dur-

ing the word-only cue period of no-think trials. They were also questioned about their

strategies after the experiment to confirm that the instructions had been followed.

4.2.3 Functional localizer (day 2, inside the scanner)

In the final functional scanning run, subjects performed a 7-minute 1-back task on images

of cars, faces, scenes and shoes. Our aim here was to generate a clean, robust neural signal

in response to viewed images that we could use to localize low-level and medium-level

posterior visual areas (such as the FFA and PPA), and that could also be used to train the

classifier. We had good reason to think that these same areas would also be activated during
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mental imagery of the same categories (Yi et al., 2008; Johnson and Johnson, 2009), so that

a classifier trained on this functional localizer phase might generalize to the think/no-think

phase.

Each image was presented for 1s as part of a 16-image block. Subjects were asked to

respond on each trial by button press indicating whether the current image matched the

previous. Each block comprised a single category of images, e.g. solely faces. There were

18 blocks in total (6 face, 6 scene, 3 car, 3 shoe). We created three between-subjects counter-

balanced 1-back designs, in each case ensuring there were 10 matches in each block, that

each exemplar appeared the same number of times as every other in that category, and that

every category block followed and was followed by every other roughly the same number

of times. Each block was separated by a 10s fixation period to allow the haemodynamic

response to subside.

Although the functional localizer stimuli were generated in the same manner and belonged

to the same four categories as the association images previously studied, all of the exemplars

were novel.

Subjects were instructed to respond on each trial with a button press to indicate whether the

current image exactly matched the previous image. These trial-by-trial responses provided

a straightforward indication of alertness that helped us pick out inattentive subjects - see

Section 4.7.

4.2.4 Behavioral final recall phase (day 2, immediately after the scanning session)

Subjects’ recollection of all the pairs was tested in this final phase of the experiment,

conducted after all the scanning had been completed. On each trial, subjects were first

presented with a word-only cue, in black ink (4000ms). They were then presented with a

4-alternative forced choice for the category of the associated image (2000ms), followed by a

4-alternative forced choice for the individual exemplar (2500ms). No feedback was given.
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Figure 20: Examples of the car, face, scene and shoe stimuli used in Experiment F7.

A lack of response was marked as incorrect. Unlike the study phase, subjects were always

presented with both the category and the exemplar forced choices. Subjects were asked to

do their best to recall the associates, even if they had previously been presented in red as

no-think pairs, or excluded from the think/no-think phase altogether as baseline pairs.

4.2.5 Stimuli

In total, there were 54 pairs in the main experiment: 18 face, 18 scene, 9 car and 9 shoe

associates. There were two car pairs and two shoe pairs set aside for use as filler stimuli

during the study phase. There were also 10 associations per category for the functional

localizer images (reused in each block). All of the association images were black and white

photographs. See Figure 20.

The word cues were drawn from the Toronto Word Pool, filtered to include only short,

common, imageable nouns, and to exclude nouns that were judged to be semantically re-
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lated to any of the image categories (to minimize encoding variability between word/image

pairs), leaving a pool of 612 to draw from randomly.

Faces The faces were all anonymous and unfamiliar square-cropped male faces.

Scenes For our place images, we considered a variety of different kinds of images. New-

man and Norman (2010) had shown that images of houses could be classified with EEG

and Polyn et al. (2005) had been successful classifying photographs of famous locations

with fMRI. However, the cropped house images floated against a blank background, which

might activate some of the object-sensitive areas, and we wanted to avoid the heterogeneity

and semantic associations of the famous locations. We picked indoor bedroom scenes in

an attempt to maximize the response from the PPA (N. Turk-Browne, personal communi-

cation, July 20th, 2009). We hoped that the indoor bedroom scenes would maximize the

degree and specificity of scene-related neural processing.

Issues with 2-category classification However, there is a serious disadvantage to running

a classification with just two categories. We wanted to obtain an independent readout for

both categories during the no-think trials, so that we could distinguish between the activa-

tion of the ’relevant’ (corresponding to the image associate’s category) and the ’irrelevant’

classifier outputs. In a 2-category classification, the independence of the two outputs can-

not be assured - if category-A was more identifiable than category-B, the classifier might

learn to pick out the category-A trials and treat the category-B trials as *not*-category-A.

In such a case, the two classifier outputs are no more independent from one another than

the seats on a see-saw. In a sense, the classifier is doing exactly what it is supposed to - it

is finding a reliable regularity in its training data which is being reproduced in the statis-

tics of its outputs. After all, if all the trials in the training data belong exclusively to one

or the other category, then the weights for the two categories will be strongly negatively

correlated.
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We considered a number of ways in which we could identify and perhaps compensate for

this non-independence of classifier outputs in the 2-category case. For instance, we might

include a number of rest (i.e. fixation) trials, where the classifier’s outputs would both

be set to zeros, i.e. ’none of the above’. But even this might not adequately decorrelate

the categories, since the input values in the rest trials would look so different from the

presentation trials that the classifier might find a way to suppress its outputs during rest

trials without affecting its representations for the two categories. Furthermore, it might

require longer breaks between trials to allow the haemodynamic response to more fully

subside towards baseline.

Ultimately, the best solution seemed to be to introduce further image categories. By forcing

the classifier to find new boundaries in its input space to discriminate between our main two

categories as well as these extra categories, we hoped to force it to find features that picked

out both face and scene categories. To put this another way, to reduce its training error with

multiple categories simultaneously, the classifer could not fall back on the category-A vs

not-category-A strategy, but would have to learn to discriminate category-A vs categories-

B-C-and-D as well as category-B vs categories-A-C-and-D (not to mention picking out

categories C and D too). This should increase the independence of the category-A and

category-B outputs.

So, adding further categories should help produce an independent readout for each cat-

egory. However, for a fixed amount of training data, adding categories would mean

fewer observations per category, which would significantly impact generalization perfor-

mance. Furthermore, these extra categories needed to meet the same criteria as faces and

places: well-established classifiability; clearly-defined functional localization; similar acti-

vation during visual presentation and mental imagery; and comparable levels of behavioral

within-category discriminability. We considered cars, shoes, chairs, body parts, flowers,

animals, tools and a number of other categories, but none of them met all these criteria.

In response, we decided to add two new categories (cars and shoes). The cars and shoes
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would appear only during the think and functional localizer trials (which we intended to

use primarily to train the classifier), and not at all during the no-think trials (whose trials

we intended to use to test the classifier). We would only include two classifier output units

(for faces and places), using the car/shoe trials as a kind of ’rest’.

Within-category behavioral discriminability for the categories should be roughly the same,

for much the same reasons that we wanted to avoid introducing systematic discrepancies

in their low-level visual characteristics. If the individual exemplars of one category were

particularly hard to remember and distinguish, this might evince a reliably salient neural

response during training trials (perhaps involving greater attention, effort or frustration)

that might not be present during mental imagery. To equalize this behavioral difficulty

across categories, we ran behavioral pilots using the same two-day paradigm as the ac-

tual experiment, and adjusted within-category stimulus similarity based on pilot subjects’

behavioral performance.

Controlling the low-level visual characteristics of the image categories We sought to

minimize the systematic discrepancies in low-level visual characteristics between the stim-

uli in our four image categories. For instance, we describe below how we ensured that the

images in all four categories were the same size, overall shape and luminance. Consider

what might otherwise happen if, say, all the face images were small and dark while our

scenes were large and bright. We might expect that a classifier trained to discriminate the

brainstates elicited by visual presentations of faces and scenes would opportunistically pick

up on these differences, since features such as size and luminance should be clearly visible

in the gross V1 representations for the two categories. However, top-down visualization

is likely to be driven by higher-level size- and luminance-invariant representations. As a

result, low-level properties such as size and luminance might not be reliably reproduced

during mental imagery. Our concern was that such systematic discrepancies in low-level

visual characteristics between image categories would then affect how well a classifier

trained on visual presentations would generalize to mental imagery.
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Boundary shape and size The scene photographs were rectangular, yet the cars, faces

and shoes all had irregular boundaries and took up differently-sized areas on the screen.

To compensate for this, we generated a number of noisy background images by scrambling

the Fourier components of the scenes, and placed each car, face and shoe image onto one,

making them the same rectangular size and shape as the scenes.

Overall luminance Inevitably, the various photographs differed in their luminance pro-

file. In an effort to reduce this, we utilized Matlab’s imadjust and adapthiseq functions to

readjust the contrast, normalize the luminance within each ’tile’ of the image and then

smooth the boundaries between tiles.

To combine the separate boundary shape/size and luminance compensation procedures de-

scribed above, we first equalized the scene images, generated the scrambled backgrounds,

superimposed the other categories on top of the backgrounds, and then ran the luminance

equalization for these compound images.

4.2.6 Scanning details

The fMRI data were acquired on a Siemens Allegra 3-Tesla scanner at the Center for the

Study of Brain, Mind, and Behavior at Princeton University. Anatomical brain images were

acquired with a fast (5-minute) MP-RAGE sequence containing 160 sagittally-oriented slices

covering the whole brain, with a voxel size of 1.0 x 1.0 x 1.0mm, and a 256mm field of view.

Functional images were acquired with an EPI sequence, containing 34 axial slices covering

almost the whole brain, collected with a TR of 2000ms, a voxel size of 3.0 x 3.0 x 3.96mm

and a 192mm field of view.

The first six runs were for the think/no-think phase (253 volumes each). The 7th run was

for the functional localizer phase (238 volumes). The final run was for the anatomical scan.

Each run began with a 10s blank period to allow the scanner signal to stabilize, and ended
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with an 8s blank period to allow for the time lag of the haemodynamic response.

In total, we collected 253 volumes for each of the 6 think/no-think functional runs, fol-

lowed by 238 volumes for the functional localizer run, totaling 1756 functional volumes.

Combined with the 5-minute anatomical scan, this amounted to a little over an hour of

scanning, excluding breaks between runs and the brief localizer scout and EPI test runs

beforehand.

4.3 Methods - behavioral analysis

For each pair, we had two 4-alternative forced-choice measures of recollection success

during the final recall phase - one for the category of the association, and one for the

individual exemplar within that category. There are various criteria that might be used for

marking a pair as ‘recalled’:

1. category - if the category response was correct (ignoring the exemplar)

2. exemplar - if the exemplar response was correct (ignoring the category)

3. both category and exemplar - if both the category and the exemplar responses were

correct.

For most of the analyses in this chapter, we will consider a pair to have been recalled

correctly only if both the category and the exemplar responses were correct.

4.3.1 Functional localizer

Subjects responded match vs non-match on every single trial of the 1-back task during

the functional localizer. We calculated the proportion of times each subject responded

correctly, primarily as a means of determining that subjects were still paying attention by

the end of the long functional scan.
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In Section 4.7, we discuss how we use this functional localizer behavioral data to exclude

subjects who were not following the instructions.

4.4 Methods - preprocessing and brain maps

4.4.1 fMRI preprocessing

The functional data were preprocessed using the AFNI software package (Cox, 1996).

Differences in slice timing were corrected by interpolation to align each slice to the same

temporal origin. Every functional volume was motion-corrected by registering it to a base

volume near the end of the functional localizer (7th) run, which directly preceded the

anatomical scan (Cox and Jesmanowicz, 1999). Signal spikes were then smoothed away

on a voxel-by-voxel basis. Each voxel’s timecourse was normalized into a percentage

signal change by subtracting and dividing by its mean (separately for each run), truncating

outlier values at 2. The data were smoothed using a Gaussian blur with a full-width

half-maximum of 4mm. 13 Baseline, linear and quadratic trends were removed from each

voxel’s timecourse (separately for each run). The functional data were then imported into

Matlab (Mathworks, Natick MA) using the Princeton MVPA toolbox (Detre et al., 2006). In

Matlab, each voxel’s timecourse was finally z-scored (separately for each run).

A brain-only mask was created (dilated by 2 voxels to ensure no cortex was accidentally

excluded).

Each subject’s anatomical scan was warped into Talairach space using AFNI’s automated

@auto_tlrc procedure. These rigid-body warp parameters were stored and used later in the

group analyses.

13As described in 4.10.1, the face vs scene group analysis mask was created using a FWHM of 8mm instead
of 4mm, to maximize overlap between subjects.
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4.4.2 Functional localizer GLM masks

In order to determine which areas’ activations differed significantly between faces and

scenes, we ran a GLM group analysis on the functional localizer run alone. First, we ran an

individual-subjects GLM on the 8mm-smoothed, percent signal change normalized data,

prior to detrending and z-scoring. We scoped the analysis to the inside of the brain, adding

’regressors of no interest’ for constant baseline, linear trends and quadratic trends. We

did not include the motion correction parameters in the GLM, since this rarely helped in

previous experiments.

The category labels of the functional localizer blocks were the regressors of interest. These

were convolved with SPM’s standard model of the haemodynamic response function before

being passed into the GLM.

Each of these individual-subjects GLMs were warped into Talairach space (using the warp

parameters defined for their anatomical). A two-factor ANOVA was run on each voxel

(in Talairach space), with face vs scene as the fixed effect, and the individual subjects as

random effects, to determine which areas differed significantly for faces and scenes, across

subjects.

4.4.3 Intersecting the individual-subjects and group analysis GLMs

Picking the right set of input features for the classifier makes a big difference to its ability to

generalize, especially when there are only a small number of noisy training observations.

Although the scene-selective regions tended to be fairly consistently located across subjects,

the location of the face-selective regions varied more widely.

We wanted to scope our analysis to regions that we had a priori reason to believe would

contain reliable, generalizable signal, but whittled down to the relevant subset for each

individual subject. To do this, we intersected (a) the voxels that passed the face vs scene

group analysis using a very liberal threshold with (b) the top 2000 voxels in the individual-
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subjects face vs scene GLM.

The number of voxels that remained after these intersections varied widely between sub-

jects. Visual inspection confirmed that they tended to be located in the posterior areas of

the cortex that we had expected.

4.5 Methods - MVPA-based approach

4.5.1 Introduction

All MVPA classification analyses were performed using a combination of AFNI (Cox, 1996)

and the Princeton MVPA toolbox in Matlab (Detre et al., 2006). As described in Section

3.1.2, the classifier was trained with labeled example brainstates, and instructed as to which

association category (e.g. faces or scenes) was associated with each brainstate. Then, we

could ask it to generalize to new brainstates where we did not have an a priori sense of

how much the representations of the associate categories were activating, such as during

the no-think trials.

During the previous pilot experiments, we had experimented with a wide range of prepro-

cessing steps, feature selection methods, classifier algorithms and parameters. For the most

part, we found that the details of the classification algorithms and parameters made only

a small difference to classification performance. In contrast, the quality and quantity of

the training data, the feature selection, and the similarity between the training and testing

data, all make a large difference. We will focus our description on our default subset of

parameters and approaches that reliably worked well.

4.5.2 Preprocessing for classification

All our classification analyses started with the AFNI preprocessing steps described in

Section 4.4.1. While the GLM brain maps benefited from 8mm smoothing, the classification
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performance was consistently highest when using 4mm smoothing (as reported by Polyn

et al., 2005, and consistent with analyses in our pilot experiments). Secondly, we used the

percent signal change normalized, detrended, z-scored data for classification - those steps

were unnecessary for the GLMs since such artifacts could be modeled away as regressors

of no interest.

4.5.3 Peeking

Our primary analyses used the functional localizer phase for training data, and the no-

think trials within the think/no-think phase as testing data. In supplementary analyses, we

tried including the think trials as training data, or (separately), testing on the think trials.

We took care to avoid ever training the classifier with the same data on which it would be

tested (to avoid the problem of ’peeking’ described in Section 3.1.2).

4.5.4 Cross-validation

In the few analyses where we wanted to train and test the classifier on different subsets of

the same phase, we used the leave-one-out cross-validation procedure described in Section

3.1.2. For instance, when attempting to determine the amount of signal in our functional

localizer run, we would train the classifier on 12 of the 18 blocks, and test it on the remaining

6, then repeat this twice more, holding out a different 6 blocks each time.

4.5.5 Feature selection

To pick the set of voxels to use as input features, we intersected the individual-subject and

group analysis GLM maps (as described in Section 4.4.3) to create a mask for each subject.

For the same reason that we kept the training and testing data carefully segregated, this

voxel selection step never included any of the testing data (see Section 3.1.2).
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4.5.6 Ridge regression

Previous experiments had indicated that a regularized logistic regression classifier would

perform reliably well on this kind of fMRI data. However, the sigmoidal output of the

logistic regression would be binarized, which might skew or obscure the middle of the

activation range critical to our hypothesis. Since we wanted to be able to use the output of

the classifier as a continuous-valued readout of the activation of the associate category, we

used ridge regression in place of the logistic regression (following Newman and Norman,

2010), since it does not apply a sigmoid or other nonlinearity to its output. Usefully, it

incorporates an (L2) regularization term (much like the regularized logistic regression),

which helps ensure that only the most useful input features get heavily weighted. We

benchmarked our basic classification analyses using both logistic and ridge regression to

confirm that ridge could perform comparably, before attempting to apply it to our later

analyses.

Strictly speaking, ridge regression is not a ’classifier’, but rather a regression algorithm. As

described, this suited our purposes when reading out continuous-valued output activations

for our binning and slope analyses (Section 4.8). When we wanted to be able to treat it as

a classifier, we trained a separate ridge regression model for each class, and then applied

a straightforward performance metric - for each testing observation, we picked the ridge

regression model with the larger output value as the ’classification guess’. We will term

the output from these separate ridge regression models as ’output units’ for simplicity.

4.5.7 Labels

For most of our primary analyses, the classifier was being trained to discriminate between

the brainstates elicited by the association categories. In other words, we had one output

unit for faces, and another for scenes.

As described in Section 4.2.5, we intended to use the extra car and shoe categories as a kind
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of ’rest’. To this end, we included the car and shoe trials as part of the training data, but

they did not have their own output units. As a result, the car and shoe trials were labeled

with as just having zeros for both the face and scene output units. The car and shoe trials

never appeared as testing observations.

4.5.8 Timepoints

Both the think and no-think trials started with a word-only cue presentation during which

subjects either attempted to recall or suppress the associate image. This was the critical part

of the trial on which we wanted to test our classifier, since this is where we expected the

signal for the recollective and mental imagery processes to be highest. Based on previous

experiments, we picked out just the period 2-4s after cue presentation onset (i.e. the second

of the two cue presentation timepoints) to focus our analysis upon. In pilot experiments,

this timepoint had consistently yielded the best classification results - we can speculate that

the cognitive processes of interest (mental imagery in the think trials, and suppression in

the no-think trials) had been fully engaged by this point. For our classifier training labels,

we created boxcar regressors spanning just this second volume from each trial, convolved

these with the gamma-variate model of the haemodynamic response, and then thresholded

them (setting the threshold at half the maximum value in the convolved timecourse). This

had a very similar effect to simply shifting the regressors forward by three timepoints (as

per Polyn et al., 2005).

4.6 Methods - region-of-interest (ROI)-based approach

As an alternative to looking at the timecourse of classifier activations during the no-think

phase, we wanted to be able to look directly at the timecourse of the BOLD response in the

high-level visual areas that are known to respond to face and scene stimuli presentations

and mental imagery. In other words, we wanted to devise a neural readout of associate
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activation without using MVPA methods, just by averaging over voxels within carefully

defined regions of interest.

First, we ran an individual-subjects GLM on the functional localizer phase, contrasting the

’face’ and ’scene’ trials. We identified the approximate bilateral locations of the fusiform

gyrus, parahippocampal gyrus and retrosplenial cortex based on anatomy.

We picked out the peak face-selective voxel in our face > scene contrast (in terms of the

T-test statistical significance) that lay within the fusiform gyrus. Often, there appeared to

be distinct anterior and posterior face-selective regions within the fusiform gyrus - since

this dichotomy fit with previous findings (Yi et al., 2008; Johnson and Johnson, 2009), we

kept both as regions of interest. Not all subjects showed both anterior and posterior FFA

regions, nor did all subjects show bilateral FFA activity, and the location varied somewhat

between subjects.

We then picked out the peak scene-selective voxel in our scene > face contrast that lay within

the parahippocampal gyrus in each hemisphere, and the peak voxels in the retrosplenial

cortex. These tended to be more consistently placed across subjects.

For each peak voxel, we created a spherical mask centered on that voxel (of radius 2mm) in

anatomical resolution, and then downsampled this mask to functional resolution, yielding

a small spherical mask containing approximately 7 voxels.

We loaded in the included voxels for the face-related regions of interest, and averaged

across them in space. This yielded a single timecourse reflecting face-related activation.

We then performed the same averaging for the scene-related regions of interest. These two

category-specific timecourses could then be processed just like the two classifier activation

timecourses in all of our subsequent analyses, providing a less processed neural signal as

a comparison to the classifier output.
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4.7 Methods - subject exclusion criterion

For our main analyses, we excluded subjects whose behavioral performance on the func-

tional localizer task (Section 4.2.3) lay more than two standard deviations below the mean

(mean 82.4%, S.D. 0.14). 3 (of 30) subjects failed to meet this criterion of 55% correct re-

sponses. On closer inspection, it became clear that these subjects had not been correctly

following the instructions (that had been both written and spoken) for responding dur-

ing the functional localizer task, and so for our main analyses, we considered only the

remaining 27 subjects.

In Sections 4.9, 4.12.1 and 4.13.1, we show that the broad patterns of results were preserved

when these 3 subjects were included.

4.8 Methods - binning analysis

4.8.1 Introduction

Our central prediction nonmonotonically relates the level of activation of a memory to its

subsequent accessibility (Figure 1). In the following binning analysis, following Newman

and Norman (2010), we hoped to read out the activation level of associate representations

during no-think trials, and to predict whether those representations would be more or less

accesible as a consequence.

In these binning analyses, we grouped together stimulus pairs that activated to roughly

the same degree. Then, we could calculate the proportion correctly recalled for each bin.

The nonmonotonic hypothesis suggests that the bins for trials in the lower-middle of the

activation range should have the worst behavioral recall performance.
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4.8.2 Overview of the binning analysis

This binning analysis can be broken down into three main stages:

1. Defining the bin boundaries for each subject - within each subject, we grouped the trials

into bins according to the ’relevant’ classifier output.

2. Running a logistic regression on each subject individually 14 - within each subject, we

trained a logistic regression classifier to classify each pair as remembered or forgotten,

based on which of the bins its trials were placed in. Specifically, the classifier inputs

for each observation were counts of how many times that pair’s trials appeared in

each bin. The set of counts for each pair always summed to 12 (the number of

repetitions per no-think pair).

3. Aggregating the betas across subjects - finally, the logistic regression beta weights per

subject were averaged across subjects to create figures such as Figure 24. The more

positive the beta weight for a bin, the more likely that pairs whose trials were placed

in that bin would be recalled, and vice versa for smaller betas.

We will now describe these steps in more detail.

4.8.3 Pulling out the ’relevant’ classifier activity for each trial

We tested the classifier on a single volume drawn from each no-think trial (see Section

4.5.8), and noted the activity level of the two (face and scene) output units. For each trial,

we can consider the output unit for the category of the associate as the ’relevant’ unit, and

the other as the ’irrelevant’ unit.
14Note that this use of a classifier to classify successful-vs-unsuccessful recalls for each pair (based on

which bins its trial activations had been placed into), is entirely separate from the prior ridge regression step
classifying faces and scenes.
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4.8.4 Defining the bin boundaries for each subject

We first aggregated all the trials together across pairs but within subjects. Given that each

subject was presented with 8 no-think pairs, each of which was repeated 12 times, this

totaled 96 no-think trials for each subject.

For each subject, we split these 96 trials into a number of evenly-sized bins based on their

’relevant’ classifier activity value.

4.8.5 Running a logistic regression on each subject individually

Next, we used the activations for a given pair to predict whether it would be remembered

or forgotten. More specifically, we counted how often the 12 trials for a given pair appeared

in each of the bins to create a kind of profile of how active that pair’s representation had

been during the no-think phase. We would predict that a pair whose trial activations

tended to land in the middle bins, for example, would be remembered less well than a pair

whose trial activations landed in the higher bins.

This stage of the analysis was also run separately for subject. For each subject, for each

pair, we counted how often that pair occurred in each of the bins. For instance, the 12 trials

for a given pair for a given subject might yield a vector of occurrence-counts such as this

[1, 6, 3, 1, 1, 0] for the 6 bin-set. As stated above, we would predict that this pair would be

forgotten, since its trial activations tend to lie in the lower-middle range.

For each subject, we trained a regularized logistic regression classifier to predict whether

a pair would be forgotten or remembered. Each pair provided a labeled observation

consisting of inputs for each bin (the occurrence counts per bin, each ranging from 0-12)

and a binary recall-or-forgotten output value. The logistic regression classifier was not

tested, and so no observations were withheld, providing a total of 8 observations (pairs)

per subject. The value of this classifier lay in its beta weights, one per bin, learned for the

remembered-vs-forgotten prediction.
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4.8.6 Aggregating the betas across subjects

After training a separate logistic regression for each subject, we averaged the sets of betas

across subjects (one set per subject), to yield a final set of mean beta weights. These mean

beta weights are plotted as the Y values in Figure 24.

4.8.7 Why did we pick this binning procedure?

This three-step binning procedure deserves some justification.

Why bin at all? In short, we need to bin because our dependent measure (whether the pair

was remembered or forgotten in the final recall phase) is binary - however, our prediction

relates the level of activation to a (continuous-valued) probability of recall. We needed

to aggregate groups of trials together to yield a continuous-valued empirical estimate of

probability of recall for each activation range.

Why did we pick 3-10 bins into which to divide our trials? At the lower end, we clearly

need at least three bins in order to demonstrate a non-monotonic effect. Of course, three

bins is probably too few, since that might lump together trials from different portions of the

nonmonotonic curve - this aliasing might very well smooth away the effect we are seeking.

On the other hand, adding too many bins would dilute our statistical power, since there

would be too few trials in each bin to observe reliable differences between them. For this

reason, we expected that somewhere between 4 and 8 bins would offer the best compromise

- for completeness, we show the results for 3-10 bin-sets.

4.8.8 Further details

Some subjects recalled all or none of the no-think pairs correctly. In this case, the logistic

regression was unable to learn weights to discriminate the two classes, and these subjects
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were excluded from this analysis.

4.9 Results - behavioral

4.9.1 Requiring both category and exemplar responses to be correct

Behavioral performance on the final recall phase was highest for think pairs (mean 63%,

SEM = 0.02), then baseline (mean 58%, SEM = 0.02) and then no-think (mean 54%, SEM =

0.02). See Figure 21b. In this version fo the analysis, we treated a recall as correct only if

both the category and exemplar responses were correct.

We wanted to measure whether suppressing recollection during no-think trials would cause

forgetting of the no-think pairs. We compared the final recall behavioral performance for

the no-think pairs with the baseline pairs (which did not appear at all during the think/no-

think phase). The below-baseline suppression comparison between no-think and baseline

pairs was clearly trending in the right direction, but not significant (t(26) = 0.82, p > 0.05).

The above-baseline facilitation effect predicted for think trials is the corollary to the below-

baseline suppression of no-think items. The above-baseline facilitation comparison be-

tween think and baseline pairs was nearly but not quite significant (t(26) = 1.48, p > 0.05).

4.9.2 Requiring just the exemplar response to be correct

Figure 21a shows the effect of redefining what it means for a pair to be correct, focusing only

on the exemplar responses and ignoring the category responses. The broad pattern of final

recall phase behavioral results does not change, though the below-baseline suppression is

still not significant.
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Figure 21: Behavioral performance on the final recall task, modifying the criterion for
defining a final recall response as correct: (a) if the exemplar response was correct; (b) if
both the category and the exemplar responses were correct.

4.9.3 Removing the subject exclusion criterion

When we removed our criterion for excluding subjects (described in Section 4.7, and

included all 30 subjects, the pattern of behavioral results remained almost unchanged (see

Figure 22). The above-baseline comparison was still not quite significant (t(29) = 1.53, p >

0.05). The below-baseline comparison moved closer to significance (5(29) = 1.30, p > 0.05).

4.10 Results - brain maps

4.10.1 Group analysis GLM

Figure 23 shows the map resulting from running a face vs scene contrast within the func-

tional localizer phase, running a second-level ANOVA group analysis on multiple invidual

subject maps (in Talairach space), each smoothed with a Gaussian kernel with a FWHM of

8mm.

As predicted, the group analysis picked out mostly posterior areas, including the fusiform

gyrus, parahippocampal gyrus and retrosplenial cortex.
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Figure 22: Behavioral performance on the final recall task, across all subjects (n = 30): (a)
if the exemplar response was correct; (b) if both the category and the exemplar responses
were correct.

4.11 Results - classification

4.11.1 Can we classify face vs scene during the functional localizer (cross-validation)?

Our ability to discriminate the brainstates for faces and scenes is central to all of our more

complex analyses.

The functional localizer phase is the only part of the experiment where subjects are actually

being presented with images while being scanned. As a result, this is the phase where we

expect the signal to be cleanest, and neural discriminability to be highest. To confirm this,

we ran a cross-validation classification within this functional localizer phase, training on

2/3 of the blocks and testing on the remaining 1/3.

Mean cross-validation classification performance for the functional localizer face and scene

blocks was 89%, significantly above the 50% level of chance performance (p < 0.05).

104



Figure 23: Group analysis with a face > scene contrast on just the functional localizer phase,
using an (uncorrected) p threshold of 0.01.
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4.11.2 Can we generalize from functional localizer phase to the think trials?

Having established a high ceiling for face vs scene classification when training on testing

on visual presentations during the functional localizer phase, we next assessed whether

a classifier trained on this functional localizer phase could generalize to the think trials.

In this case, subjects were attempting to form a vivid and detailed mental image of the

associate for the word cue being presented.

Mean classification performance for face vs scene on the think trials was 62%, significantly

above the 50% level of chance performance (p < 0.05).

4.11.3 Can we generalize from the functional localizer phase to the no-think trials?

Finally, we assessed whether a face vs scene classifier trained on the functional localizer

phase could generalize to the no-think trials. This is a more difficult discrimination than

generalizing to the think trials since subjects are actively trying to suppress recollection of

the associate whose category we are trying to determine.

Mean classification performance for face vs scene on the no-think trials was 53%, signifi-

cantly above the 50% level of chance performance.

4.12 Results - binning analysis - MVPA-based approach

In this section, we discuss the results for the main MVPA-based approach (using the

relevant classifier output, requiring both category and exemplar responses to be correct,

and excluding 30 subjects).

Figures 24 and 25 show the results for the MVPA-based analysis, binning by between 3 and

10 bins. The bins are plotted at equal intervals along the X axis. The Y-axis shows the beta

weights of the logistic regressions, averaged across subjects (as calculated in section 4.8.6).

To assess the significance of the non-monotonic U-shape for each middle bin in each bin-
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Figure 24: MVPA-based binning analysis, using the relevant classifier output, excluding 3
subjects, MVPA-based approach. Varying the number of bins: (a) 3 bins (b) 4 bins (c) 5 bins
d) 6 bins.

Figure 25: MVPA-based binning analysis, using the relevant classifier output, excluding 3
subjects, MVPA-based approach. Varying the number of bins: (a) 7 bins (b) 8 bins (c) 9 bins
(d) 10 bins.

set, we ran paired t-tests comparing the beta weights for the middle (all but the first and

last) bins with the beta weights for the outer bins (first and last). Specifically, for each of

the middle bins, we ran a one-tailed t-test against both of the outer bins - if any of the

middle bins were significantly smaller than both of the outer bins, that bin was considered

significant, and marked with a red circle in Figures 24 and 25. None of the individual

middle bins in any of the bin-sets were significantly lower than both of the outer bins.

The error bars shown are standard error bars. However, the across-subject t-tests comparing

the betas for each of the middle bins with the betas in the first and last bins conducted were

paired samples.

In Experiment B1, we ran a similar kind of binning analysis to group trials based on their

cue presentation duration. In order to correct for the multiple comparisons involved in

running t-tests on each of the middle bins in each of the bin-sets, we ran a non-parametric

permutation test across all of the middle bins and all of the bin-sets, permuting the recalled-
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Figure 26: MVPA-based binning analysis - including all 30 subjects. Varying the number
of bins: (a) 3 bins (b) 4 bins (c) 5 bins (d) 6 bins.

vs-forgotten values for each pair within subjects. This yielded an overall p-value, reflecting

how often we should expect to see middle bins dipping this far below the first and last bins

within their bin-set by chance. We applied the same procedure (described in full in section

2.2.3) to determine whether the nonmonotonic effects for this full analysis (run across all

the middle bins and multiple bin-sets) were significant.

We found this non-parametric test for the main MVPA-based binning analysis to be non-

significant, but very close (200 permutations, p = 0.06).

4.12.1 Removing the subject exclusion criterion from the MVPA-based binning analy-

sis

We re-ran the main MVPA-based analysis described in Section 4.12, relaxing our subject

exclusion criterion (described in Section 4.7) to include all 30 subjects - see Figures 26 and

27.

As before, none of the individual middle bins in any of the bin-sets were significant. We

also ran the non-parametric permutation test procedure (see Section 4.12) to determine the

significance of any nonmonotonic effects across all the middle bins in all the bin-sets. In

this case, the inclusion of these extra 3 subjects nudged the nonmonotonic effect to become

narrowly significant (200 permutations, p = 0.04).
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Figure 27: MVPA-based binning analysis - including all 30 subjects. Varying the number
of bins: (a) 7 bins (b) 8 bins (c) 9 bins (d) 10 bins.

Figure 28: MVPA-based binning analysis - applied to the think rather than the no-think
trials. Varying the number of bins: (a) 3 bins (b) 4 bins (c) 5 bins (d) 6 bins.

4.12.2 Applying the MVPA-based binning procedure to the think trials

Figures 28 and 29 show the results of testing the classifier on the think (instead of the

no-think) trials, and running the binning analysis on these trials.

N.B. due to a technical glitch, two subjects had to be excluded from this particular analysis,

leaving 25 instead of 27 subjects.

None of the individual parametric binning analyses were significant, nor was the non-

Figure 29: MVPA-based binning analysis - applied to the think rather than the no-think
trials. Varying the number of bins: (a) 7 bins (b) 8 bins (c) 9 bins (d) 10 bins.
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Figure 30: ROI-based binning analysis. Varying the number of bins: (a) 3 bins (b) 4 bins (c)
5 bins (d) 6 bins.

Figure 31: ROI-based binning analysis. Varying the number of bins: (a) 7 bins (b) 8 bins (c)
9 bins (d) 10 bins.

parametic permutation test (200 permutations, p = 0.74).

4.13 Results - binning analysis - ROI-based approach

As described in Section 4.6, we wanted to know whether the nomonotonic effect was

visible even without the use of a classifier. We followed the main MVPA-based analysis

where possible (excluding the same 3 subjects, using the output of the ’relevant’ ROI, and

requiring both the category and exemplar final recall responses to be correct). Figures 30

and 31 show the average activity within the regions of interest.

As before, we ran t-tests on each of the middle bins for each of the bin-sets. Two of the

lower-middle bins in the 7-tile analysis were significantly below both the first and last of

the 7-tile bins.

The non-parametric analysis (as described in Section 4.12, based on the RSVP procedure in

Section 2.2.3) proved highly significant (200 permutations, p < 0.01).
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4.13.1 Removing the subject exclusion criterion from the ROI-based binning analysis

analysis

The non-parametric results for the ROI-based approach remained significant when we

relaxed the subject exclusion criterion to include all 30 subjects (200 permutations, p <

0.01), though we have not included the figures here.

4.14 Discussion

Summary In this experiment, we described two main binning analysis pathways (MVPA-

based and ROI-based) for reading out a covert, neural measure of the activation of the

associate memory during no-think trials. We binned the no-think trials based on this

activation measure, then ran a logistic regression to predict whether a given pair would be

recalled or forgotten based on which bins it occurred in. A non-parametric permutation

test was run on all the middle bins in all of the bin-sets for the following binning analysis

variants:

1. The main MVPA-based analysis (excluding 3 subjects, using the ’relevant’ classifier

output, and requiring both the category and exemplar final recall responses to be

correct) was not quite significant.

2. However, when the subject exclusion criterion was relaxed, including all 30 subjects,

this version of the MVPA-based analysis became just significant.

3. There was no significant nonmonotonic effect when the MVPA-based binning analysis

was applied to the think rather than the no-think trials.

4. The main ROI-based analysis was highly significant.

5. The ROI-based analysis remained highly significant even after relaxing the subject

exclusion criterion.
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These results suggest that we can indeed use fMRI to provide a covert neural measure of

associate activation and that this activation does appear to relate nonmonotonically to the

subsequent accessibility of the associate memory.

4.14.1 Can we draw rely on the classifier’s output when its generalization performance

is so low?

In Section 4.11, we reported that generalization performance from the functional localizer

phase to the no-think phase was around 53% - above the chance performance level of 50%,

but only barely. It is reasonable to think that this might not provide enough signal to be

able to make fine-grained discriminations between low, moderate and high activations of

the associate.

However, we had good reasons to believe that we might be able to extract useful and graded

signal from the classifier before running the binning analysis, even with this level of no-

think generalization performance. To begin with, in preliminary analyses (not reported

here), we could see clear differences in the classifier outputs for subsequently remembered

and forgotten no-think pairs, indicating that the classifier was picking up on something

meaningful. More generally, previous papers have successfully used classifiers to make

fine-grained discriminations between levels of activity even when classifier performance

is only slightly above chance (e.g. Newman and Norman, 2010; McDuff et al., 2009). Even

though each individual classifier output value will be very noisy, across the nearly 3000

trials (for up to 30 subjects), we might expect much of this noise to cancel out.

4.14.2 Why did the ROI-based analysis work better than the MVPA-based analysis?

We had expected that the MVPA approach would provide a more sensitive readout of the

associate activation, and thus be more likely to show any nonmonotonic effects. However,

the ROI-based analysis turned out to yield a much more robust nonmonotonic effect, with
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much cleaner-looking graphs (compare the ROI-based Figures 30 and 31 with the MVPA-

based Figures 24 and 25).

There are a number of differences between the MVPA- and ROI-based analyses that could

be giving rise to this difference:

1. The ROI-based analysis operates directly on the BOLD response. In contrast, the

classifier first passes this BOLD response through its matrix of learned weights. It

could be that some aspect of the classifier training on the functional localizer data is

causing it to emphasize features that do not work reliably when applied to estimating

the degree to which the no-think associate memories are being recollected.

2. There are dramatically fewer features in the ROI-based analysis. Preliminary MVPA

analyses (not reported here) with comparable numbers of voxels tended to yield

slightly inferior classification performance, though it may be worth revisiting these

analyses in the light of the ROI results.

3. Beyond just the sheer quantity of voxels, the ROI-based analyses picked their features

in a very different way. While the MVPA analyses relied entirely on intersecting GLM

contrasts, the ROI analysis relied on picking the peak voxel within an anatomical

region, defined by hand. It could be that the MVPA GLM group analyses excluded

important areas such as the FFA (whose position tended to vary widely between

subjects), or that incorporating a priori anatomical information helps pick out voxels

with reliable signal.

We hope to learn more about why the ROI-based analyses are working so much better by

applying classifiers to the ROI features in future analyses. If the ROI features are what

makes the difference, then a classifier trained on these features should do at least as well

as straight averaging in space.
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5 General discussion

5.1 Summary

We set out to show how cuing, interference at retrieval and weakening might all be related

by the way that memories activate and compete at retrieval. We reviewed two main behav-

ioral paradigms, retrieval-induced forgetting and think/no-think. We described three very

different accounts of these results: top-down targeted inhibition; the 2-phase interference

theory; and the oscillating learning rule. We then argued that all three make a common set

of predictions: memories that activate highly win the competition and get strengthened;

memories that activate moderately lose the competition and get forgotten; the closer the

competition, the greater the consequent strengthening and forgetting; and memories that

do not activate do not compete, and are unaffected.

In our 4 behavioral experiments, we attempted to finely control the degree of activation of

to-be-forgotten representations by engineering tasks that would moderately activate them.

Experiment B4b was successful in showing a significant below-baseline effect for these

moderately activated representations. In Experiment B1, the non-parametric permutation

test results were promising but not significant.

Over the course of our 3 fMRI experiments, we developed multiple covert, neural measures

of memory activation. In Experiment F7, we showed a significant nonmonotonic relation-

ship between the activation of a memory (as measured either with a classifier, or directly

from the BOLD activity within regions of interest) and its subsequent recall accessibility.

5.1.1 Experiment B1 - RSVP

We first set out to try and map this nonmonotonic activation/accessibility curve behaviorally

using an RSVP task (Experiment B1), with cue presentation duration as a proxy for associate

activity. The results from this were promising - while there was no overall difference
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between the RSVP and the baseline pairs, some of the pairs whose cues were presented

for around 200ms showed below-baseline recall. When we corrected fully for multiple

comparisons with a non-parametric permutation test, the overall effect across bins and

bin-sets was not significant, though fairly close.

More data would help determine whether this below-baseline effect for bins around 200ms

is real. We would also like to test whether the unexpected above-baseline performance for

very fast presentations is meaningful. Finally, we want to widen the range of presentation

durations to see if we can map out the whole shape of the nonmonotonic curve, and show

above-baseline performance for the very slow durations.

5.1.2 Experiment B4b - graduated exposure watermark task

We introduced the ’graduated exposure watermark’ task, incorporating 3 devices in an

attempt to control the degree of activation of the associate memories:

1. Counting the superimposed watermark household objects, to provide a distracting

alternative to thinking about the scene associate.

2. As in the standard no-think instructions, subjects were also asked to prevent the scene

associated with the background face from coming into their minds.

3. By analogy with the ’graduated exposure’ approach described in Section 2.6.1, we

slowly ramped up the visibility of the background face images over the course of the

think/no-think phase.

The graduated exposure watermark task successfully produced a significant suppression

effect. This suppression effect was not larger than the effect for the no-think task. However,

unlike the no-think task, there are many ways in which the graduated exposure watermark

task might be parameterized to make it more reliable and more effective in the future

(Section 5.5.2).

115



5.1.3 Experiment F7 - main fMRI think/no-think

While Experiment B1 provided a continuous-valued independent measure for controlling

activation, we can think of Experiment F7 as providing a corresponding continuous-valued

dependent measure for reading out activation.

We aggregated groups of trials based on the activation of the associate (as measured

with a classifier, or directly from the BOLD activity in regions of interest), and found a

significant nonmonotonic relationship between these activations and the subsequent recall

probability with our binning analyses. The nonmonotonic effect was strongest for the

ROI-based analyses, but also significant for the MVPA-based analysis when we relaxed the

subject exclusion criterion.

5.2 Do these results support the nonmonotonic learning hypothesis?

We have presented a number of experiments designed to test the hypothesis that there is

a nonmonotonic relationship between the degree of activation and the subsequent accessi-

bility of a representation.

Of the 4 behavioral experiments, only one (Experiment B4b) was significant, after correcting

for multiple comparisons. On the face of it, these behavioral null effects cast doubt on the

nonmonotonic hypothesis. However, as discussed in Section 2.7, there are a number of

potential theoretical and practical obstacles that we think may explain why only 1 of the

4 experiments showed a significant effect. Indeed, it was the difficulty of controlling

the trial-to-trial variability in activation that spurred development of the neuroimaging

paradigm.

The fMRI results from Experiment F7 were more encouraging. We found significant non-

monotonic effects for the MVPA-based binning analysis when we included all 30 subjects,

and for both variants of the ROI-based analysis. These results support the idea that the

unreliability of the forgetting effects in the above behavioral experiments (and previously
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in the literature - see Section 1.2.4) stems from our inability to control how much the associ-

ations activate. Using neuroimaging, we can at least measure this variability, and account

for it.

5.3 Comparing the three theories that make a nonmonotonic prediction

5.3.1 Probing the top-down targeted inhibition account

According to the top-down targeted inhibition account (Levy and Anderson, 2002), cog-

nitive control plays a central role in suppressing no-think responses, causing them to be

weakened.

Our results were consistent with this hypothesis. The two experiments that worked best

involved explicit instructions to avoid thinking about the associate. In Experiment B4b,

the graduated exposure watermark task included this injunction as part of the instructions,

along with the watermark counting task to provide a distracting goal to focus on. In

Experiment F7, subjects’ primary goal during the no-think trials was to avoid thinking

about the associate or letting it enter their consciousness.

The earlier behavioral experiments made this suppression instruction less explicit. For

instance, in the case of the RSVP task in Experiment B1, subjects were simply told to

stay focused on looking for the oddball image, with no mention made of suppressing the

associates. These Experiment B1 results were promising, but still not significant. If they had

been, they might have suggested that explicit top-down targeted inhibition from cognitive

control processes is not necessary for forgetting. As discussed in Section 2.7.4, we think

that Experiment B1 could be modified to work more successfully in the future, potentially

informing our view on the necessity of top-down targeted inhibition in forgetting.
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5.3.2 Probing the interference-based account

According to the Tomlinson et al. (2009) interference account, subjects sometimes sampled

the location of a memory trace during no-think trials, and then replaced the contents of

that memory trace with a new ’sitting quietly’ memory. Later, when their recall for this

memory was tested, they would often recover the new, interfering ’sitting quietly’ memory

in place of the original association, and so exhibit below-baseline suppression.

We argued that despite the different mechanisms involved, even this interference-based

theory predicted the same nonmonotonic relationship between activation and subsequent

accesibility of a memory. Our primary aim has been to bolster the sparse evidence for this

nonmonotonic prediction, rather than finding ways to disambiguate the three accounts

that generate it (Section 1.3). However, in the next section, we do consider how some

variant on the Experiment B2 paradigm might be used to separate out the predictions of

the interference-based theory, if the experiment were to yield a significant below-baseline

forgetting effect.

Structural weakening of memory traces The interference-based theory accounts for the

findings of cue-independent forgetting without incorporating structural weakening of

memory traces.

In Experiment B2, we attempted to design a paradigm whose findings could not be ex-

plained in this way by a pure-interference account, i.e. which could only be explained

in terms of memory weakening. Our aim was to show that the ‘watermark task’ could

weaken proactively interfering A-B associations, and so make it easier to then learn new

A-C associations. However, we did not show this release from proactive interference.

We have discussed a number of reasons why our behavioral experiments might have failed

to produce forgetting effects, even if the theory motivating them was right (Section 2.7).

All we can say is that if a variant of this paradigm were to yield a significant release
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from proactive interference, it might be hard to account for without positing structural

weakening of memories. After all, creating extra watermark-counting memories of a cue

should not reduce the proactive interference when learning new associations to those cues,

unless the watermark task had weakened those associations. In this way, this potentially

presents a means of pulling apart the predictions of the weakening accounts from the pure

interference-based account.

5.3.3 Probing the oscillating learning algorithm account

In Section 1.3.3, we mentioned that the oscillating learning algorithm predicts that no

learning will occur at extremely high levels of activation.

We did not expect to see evidence of this return to baseline at the right hand end of the

nonmonotonic activity/accessibility curve in any of the experiments described here (and

nor did we). In order for the the representations to remain intact, even at the peak of the

oscillating inhibition, they have to be extremely strong - and it is difficult to create such

strong memories in the laboratory. As a result, this is one of the least-tested predictions of

the oscillating learning algorithm.

This prediction is specific to the oscillating learning rule, and is not made by the other

members of the nonmonotonic learning rule family (Section 1.3.3), nor by the other two

accounts. As a result, it would provide a way to distinguish the various accounts in future.

5.4 Future work

5.4.1 Stimuli in the behavioral experiments

In chapter 2, we presented 4 behavioral experiments, only two of which produced a signifi-

cant forgetting effect. In Section 2.7.3, we consider the possibility that the location/celebrity

stimuli might be a root cause of these null effects. It would be straightforward to attempt a
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close replication of Experiments B2 or B3 using words or less rich, verbalizable and differ-

entiated images (such as the word-face/scene pairs used in Experiment F7), to see whether

this simple change makes a noticeable difference.

5.4.2 Determining what made the graduated exposure watermark task successful

As discussed, there are three components to the graduated exposure watermark task (count-

ing the watermarks, avoiding recollection of the associate, and graduated exposure of the

cue). It would be valuable to determine which of these is most important for producing

below-baseline suppression. We would like to run variants of Experiment B4b with mod-

ified watermark tasks that only comprise one or two of the devices. Having established

their relative contributions, it might then be possible to think about how to tweak them

to make the graduated exposure task more reliable and effective. For instance, the rate at

which the visibility of the cues was increased might be too slow or too fast, or it might be

possible to devise a distractor task better titrates the degree to which subjects process the

cue in the background.

5.4.3 Adaptive exposure - using real-time MVPA to modulate the graduated exposure

As discussed in 2.6.5, the graduated exposure schedule for increasing the visibility of

the cue image was fixed in Experiment 4b, changing slightly every two repetitions. In

other words, the graduated exposure was not adaptively driven by the strength of the

representation we sought to suppress.

In Experiment F7, we demonstrated that we could use classifiers to read out the strength of

the memory activation well enough to reveal the shape of the nonmonotonic relationship

between activation and learning. If we could apply these same trial-by-trial measures to

neuroimaging data in real-time (DeCharms et al., 2005), we might be able to adaptively

change the visibility of the cue to maximize competition while minimizing intrusions.

120



From an experimental point of view, this real-time readout of memory activation would

provide a much finer-grained control over memory activation, and could be used to modu-

late competition to more directly test the nonmonotonic predictions of competition-driven

learning.

5.5 Concluding remarks

5.5.1 Applicability of the nonmonotonic prediction to other domains

The nonmonotonic activity/accessibility curve provides a framework for understanding

how competition and level of activation can drive learning. This framework could apply

outside the retrieval-induced forgetting and think/no-think paradigms, e.g. to domains

such as task switching, cognitive dissonance reduction and metaphor comprehension

(Norman et al., 2006). Indeed, we have already discussed Newman and Norman (2010)’s

successful demonstration of a nonmonotonic effect in an EEG negative priming experiment.

5.5.2 Clinical applications

In Section 2.5, we discussed the possibility that the nonmonotonic predictions might have

important clinical applications for therapeutic suppression for patients suffering from dis-

orders such as phobias and post-traumatic stress disorder (Fenstemaker, 2009).

The competition-dependent learning framework places heavy emphasis on the importance

of minimizing intrusions, since even a slight increase in the strength of a competing memory

could push it above threshold and cause it to be counter-productively strengthened. This

issue is even more critical for clinical applications, since the memories being weakened are

so especially strong and intrusive.

The standard no-think instructions are very open-ended and hard to parameterize. In

contrast, it should be possible to precisely calibrate both the RSVP task (by modifying the
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cue presentation speed) and the graduated exposure watermark task (by modifying the

visibility of the background cue images) to make them potentially suitable for patients

with poor executive control and/or abnormally strong and intrusive emotional memories.

Better still, we might be able to combine them with real-time neuroimaging to modulate

these parameters adaptively, to help even more in producing approaches of real clinical

value to patients.

5.5.3 Application to daily life

As discussed in Section 5.2, neuroimaging provides a way to measure the variability of

activation on a trial-by-trial basis. By measuring it, we can account for this variability and

predict when we should see subsequent forgetting, but not affect it.

However, if our aim is to apply our predictions to clinical situations or daily life, we will

need to be able to more straightforwardly and reliably control this variability. New be-

havioral paradigms (e.g. based on our RSVP and graduated exposure watermark tasks)

might provide greater control over memory activation, but if they require careful presen-

tations of external stimuli they will be limited in their usefulness for everyday life. For

now then, perhaps the most important take-home message is to try one’s best not to let the

to-be-forgotten memories activate strongly, otherwise they may well get strengthened.
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